Intégration

Nom:	Prénom:
1. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{1}{2}} x^n \sin(\pi x) dx$	$\mathrm{d}x.$
(**) **********************************	
(b) Montrer que, $\forall n \in \mathbb{N}, 0 \leq I_n \leq \frac{1}{(n+1)2^n}$	
(c) En déduire $\lim_{n\to+\infty} I_n$.	++1
$\underset{n \to +\infty}{\overset{n}{\longrightarrow}} n$	
2. Déterminer $\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{1}{k+n}$.	

Lycée Jules Garnier

3.	(a) Pour $n \in \mathbb{N}$ et $x \neq 1$, simplifier $\sum_{k=0}^{n-1} x^k$.
	(b) En déduire la forme explicite de $I_n = \int_{-1}^0 \frac{x^n}{1-x} dx$.
	(c) (\star) En déduire $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^k}{k}$.

Intégration

Nom:	Prénom:
1. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{1}{2}} x^n \cos(\pi x) dx$. (a) Calculer I_0 .	
(b) Montrer que, $\forall n \in \mathbb{N}, \ 0 \leqslant \mathbf{I}_n \leqslant \frac{1}{(n+1)2^{n+1}}.$	
(c) En déduire $\lim_{n\to+\infty}\mathbf{I}_n$.	
2. Déterminer $\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{k}{k^2 + n^2}$.	
n-v	

F. PUCCI

3.	(a) Pour $n \in \mathbb{N}$ et $x \neq 1$, simplifier $\sum_{k=0}^{n-1} x^k$.
	(b) En déduire la forme explicite de $I_n = \int_{-1}^0 \frac{x^n}{1-x} dx$.
	(c) (\star) En déduire $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^k}{k}$.