Intégration

- 1. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{1}{2}} x^n \sin(\pi x) dx$.
 - (a) Calculer I₀.
 - (b) Montrer que, $\forall n \in \mathbb{N}, 0 \leqslant I_n \leqslant \frac{1}{(n+1)2^{n+1}}$.
 - (c) En déduire $\lim_{n\to+\infty} I_n$.
 - (a) $I_0 = \int_0^{\frac{1}{2}} \sin(\pi x) dx = \left[-\frac{1}{\pi} \cos(\pi x) \right]_0^{\frac{1}{2}} = \frac{1}{\pi}$
 - (b) $\forall x \in \left[0; \frac{1}{2}\right], 0 \leqslant \sin(\pi x) \leqslant 1$. Par croissance de l'intégrale, on a alors :

$$0 \leqslant I_n \leqslant \int_0^{\frac{1}{2}} x^n \, \mathrm{d}x = \frac{1}{(n+1)2^{n+1}}.$$

- (c) D'après le théorème d'encadrement, $\lim_{n\to +\infty} \mathbf{I}_n = 0.$
- 2. Déterminer $\lim_{n\to+\infty} \sum_{k=0}^{n-1} \frac{1}{k+n}$.

En posant $f: x \mapsto \frac{1}{x+1}$ continue sur [0;1], on a :

$$\sum_{k=0}^{n-1} \frac{1}{k+n} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\frac{k}{n}+1} = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \xrightarrow[n \to +\infty]{} \int_0^1 f(t) \, \mathrm{d}t = \int_0^1 \frac{1}{t+1} \, \mathrm{d}t = \ln(2).$$

- 3. (a) Pour $n \in \mathbb{N}$ et $x \neq 1$, simplifier $\sum_{k=0}^{n-1} x^k$.
 - (b) En déduire la forme explicite de $I_n = \int_{-1}^0 \frac{x^n}{1-x} dx$.
 - (c) (*) En déduire $\lim_{n\to+\infty}\sum_{k=1}^n\frac{(-1)^k}{k}$.
 - (a) Pour $x \neq 1$, $\sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}$ i.e. $\frac{x^n}{1-x} = \frac{1}{1-x} \sum_{k=0}^{n-1} x^k$.
 - (b) Par linéarité de l'intégrale, on a

$$\begin{split} \mathbf{I}_n &= \int_{-1}^0 \frac{x^n}{1-x} \, \mathrm{d}x = \int_{-1}^0 \frac{1}{1-x} \, \mathrm{d}x - \sum_{k=0}^{n-1} \int_{-1}^0 x^k \, \mathrm{d}x \\ &= \left[-\ln(1-x) - \sum_{k=0}^{n-1} \frac{x^{k+1}}{k+1} \right]_{-1}^0 = \ln(2) + \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{k+1} \\ &= \ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k}. \end{split}$$

(c) Sur $[-1\,;0],\,0\leqslant\frac{1}{1-x}\leqslant1.$ Par croissance de l'intégrale,

$$0 \leqslant |\mathbf{I}_n| \leqslant \int_{-1}^{0} |x|^n \, \mathrm{d}x = \left[\frac{|x|^{n+1}}{n+1} \right]_{-1}^{0} = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0.$$

D'après le théorème d'encadrement, on a donc $\lim_{n \to +\infty} \mathbf{I}_n = \lim_{n \to +\infty} \left(\ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k} \right) = 0.$

En conséquence, $\lim_{n\to +\infty} \sum_{k=1}^n \frac{(-1)^k}{k} = -\ln(2).$

Intégration

- 1. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{1}{2}} x^n \cos(\pi x) dx$.
 - (a) Calculer I₀.
 - (b) Montrer que, $\forall n \in \mathbb{N}, \ 0 \leqslant \mathbf{I}_n \leqslant \frac{1}{(n+1)2^{n+1}}$.
 - (c) En déduire $\lim_{n\to+\infty} I_n$.
 - (a) $I_0 = \int_0^{\frac{1}{2}} \cos(\pi x) dx = \left[\frac{1}{\pi} \sin(\pi x)\right]_0^{\frac{1}{2}} = \frac{1}{\pi}.$
 - (b) $\forall x \in \left[0; \frac{1}{2}\right], 0 \leqslant \cos(\pi x) \leqslant 1$. Par croissance de l'intégrale, on a alors :

$$0 \leqslant I_n \leqslant \int_0^{\frac{1}{2}} x^n \, \mathrm{d}x = \frac{1}{(n+1)2^{n+1}}.$$

- (c) D'après le théorème d'encadrement, $\lim_{n\to +\infty} \mathbf{I}_n = 0.$
- 2. Déterminer $\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{k}{k^2 + n^2}$.

En posant $f: x \mapsto \frac{t}{t^2+1}$ continue sur [0;1], on a:

$$\sum_{k=0}^{n-1} \frac{k}{k^2 + n^2} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\frac{k}{n}}{\left(\frac{k}{n}\right)^2 + 1} = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \xrightarrow[n \to +\infty]{} \int_0^1 f(t) \, \mathrm{d}t = \int_0^1 \frac{t}{t^2 + 1} \, \mathrm{d}t = \left[\frac{1}{2} \ln(t^2 + 1)\right]_0^1 = \frac{1}{2} \ln(2)$$

- 3. (a) Pour $n \in \mathbb{N}$ et $x \neq 1$, simplifier $\sum_{k=0}^{n-1} x^k$.
 - (b) En déduire la forme explicite de ${\rm I}_n = \int_{-1}^0 \frac{x^n}{1-x} \, {\rm d}x.$
 - (c) (*) En déduire $\lim_{n\to+\infty}\sum_{k=1}^n\frac{(-1)^k}{k}$.
 - (a) Pour $x \neq 1$, $\sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}$ i.e. $\frac{x^n}{1-x} = \frac{1}{1-x} \sum_{k=0}^{n-1} x^k$.
 - (b) Par linéarité de l'intégrale, on a

$$\begin{split} \mathbf{I}_n &= \int_{-1}^0 \frac{x^n}{1-x} \, \mathrm{d}x = \int_{-1}^0 \frac{1}{1-x} \, \mathrm{d}x - \sum_{k=0}^{n-1} \int_{-1}^0 x^k \, \mathrm{d}x \\ &= \left[-\ln(1-x) - \sum_{k=0}^{n-1} \frac{x^{k+1}}{k+1} \right]_{-1}^0 = \ln(2) + \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{k+1} \\ &= \ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k}. \end{split}$$

(c) Sur [-1;0], $0 \leqslant \frac{1}{1-x} \leqslant 1$. Par croissance de l'intégrale,

$$0 \leqslant |\mathbf{I}_n| \leqslant \int_{-1}^{0} |x|^n \, \mathrm{d}x = \left[\frac{|x|^{n+1}}{n+1} \right]_{-1}^{0} = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0.$$

D'après le théorème d'encadrement, on a donc $\lim_{n \to +\infty} \mathbf{I}_n = \lim_{n \to +\infty} \left(\ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k} \right) = 0.$

En conséquence, $\lim_{n\to +\infty} \sum_{k=1}^n \frac{(-1)^k}{k} = -\ln(2).$

Lycée Jules Garnier