Z'eta(2m)

On se propose dans ce devoir de trouver la valeur de $\zeta(2m) = \sum_{k=1}^{+\infty} \frac{1}{k^{2m}}$.

I. Polynômes de Bernoulli

1. Soit $f:[0,1]\to\mathbb{R}$ une application continue.

Montrer l'existence et l'unicité d'une application $F:[0,1]\to\mathbb{R}$ de classe \mathscr{C}^1 telle que :

$$\begin{cases} \forall \, x \in [0,1], \quad \mathbf{F}'(x) = f(x) \\ \int_0^1 \mathbf{F}(t) \, \mathrm{d}t = 0. \end{cases}$$

2. Montrer l'existence et l'unicité d'une suite $(B_n)_{n\in\mathbb{N}}$ de polynômes tels que $B_0=1$ et :

$$\forall\,n\in\mathbb{N},\quad \begin{cases} \forall\,x\in[0,1],\quad \mathrm{B}_{n+1}'(x)=(n+1)\mathrm{B}_n(x)\\ \int_0^1\mathrm{B}_{n+1}(t)\,\mathrm{d}t=0. \end{cases}$$

Calculer B_n pour $n \in [0, 6]$. Les B_n sont appelés polynômes de Bernoulli.

- 3. Préciser le degré et le coefficient dominant de $\mathbf{B}_n.$
- 4. (a) Pour $n \ge 2$, établir la relation $B_n(1) = B_n(0)$.
 - (b) Pour $n \in \mathbb{N}^*$ et $k \in [0, n]$, exprimer $B_n^{(k)}$ en fonction de B_{n-k} .
 - (c) Avec la formule de Taylor, établir pour $n \ge 2$, $\sum_{k=0}^{n-1} \binom{n}{k} B_k(0) = 0$.
 - (d) En déduire la valeur exacte des $B_n(0)$ pour $n \in [0, 10]$. Les $B_n(0)$ sont appelés nombres de Bernoulli.

II. Calcul des $\zeta(2m)$

- $1. \text{ Pour } n \in \mathbb{N}^{\star} \text{ et } t \in]0,1[, \text{ montrer que } 1+2\sum_{k=1}^{n}\cos(2k\pi t) = \frac{\sin((2n+1)\pi t)}{\sin(\pi t)}.$
- 2. Pour $n\geqslant 2,$ on définit l'application $\phi_n:\]0,1[\ \ \longrightarrow\ \ \mathbb{R}$

$$t \quad \longmapsto \quad \frac{\mathbf{B}_n(t) - \mathbf{B}_n(0)}{\sin(\pi t).}$$

- (a) Prolonger ϕ_n par continuité sur [0,1].
- (b) Montrer que le prolongement, encore noté ϕ_n , est de classe \mathscr{C}^1 sur [0,1].
- (c) Pour tout $\lambda \in \mathbb{R}$, justifier l'existence de l'intégrale $\int_0^1 \phi_n(t) \sin(\lambda t) dt$.

Montrer que
$$\lim_{\lambda \to +\infty} \left(\int_0^1 \phi_n(t) \sin(\lambda t) dt \right) = 0.$$

 $\mathsf{Z\acute{e}ta}(2m)$

- $3. \text{ Pour } (m,k) \in \left(\mathbb{N}^{\star}\right)^2 \text{, on note } \mathbf{I}_{m,k} = \frac{1}{(2m)!} \int_0^1 \mathbf{B}_{2m}(t) \cos(2k\pi t) \,\mathrm{d}t.$
 - (a) Pour $m \ge 2$, trouver une relation entre $I_{m,k}$ et $I_{m-1,k}$.
 - (b) Calculer $I_{1,k}$.
 - (c) En déduire $I_{m,k}$ pour tout $(m,k) \in (\mathbb{N}^*)^2$.
- 4. Pour $(m,n) \in (\mathbb{N}^{\star})^2$, exprimer l'intégrale $\int_0^1 \phi_{2m}(t) \sin((2n+1)\pi t) dt$ en fonction de $\mathbf{B}_{2m}(0)$ et des $\mathbf{I}_{m,k}$ pour $k \in [\![1,n]\!]$.
- 5. On fixe $m \in \mathbb{N}^*$. Montrer que la suite $(S_n)_{n\geqslant 1}$ donnée par $S_n = \sum_{k=1}^n \frac{1}{k^{2m}}$ converge. On note $\zeta(2m)$ sa limite.

Prouver que $\zeta(2m) = (-1)^{m-1} \frac{2^{2m-1}}{(2m)!} \mathbf{B}_{2m}(0) \pi^{2m}$.

6. Calculer $\zeta(2)$, $\zeta(4)$, $\zeta(6)$, $\zeta(8)$ et $\zeta(10)$.