Applications linéaires

Nom:

Prénom:

I/ QCM

Une seule réponse exacte par question.

I.1 En dimension quelconque

- 1. Soit u un endomorphisme d'un espace vectoriel E. Quelle propriété est toujours vérifiée?
 - (a) $\square \operatorname{Im} u \subset \operatorname{Im} u^2$

(c) $\square \operatorname{Im} u \cap \operatorname{Im} u^2 = \{0\}$

(b) $\square \operatorname{Im} u \supset \operatorname{Im} u^2$

- (d) $\square \operatorname{Im} u + \operatorname{Im} u^2 = \operatorname{E}$
- 2. Si u, v sont deux endomorphismes de E tels que ker $u \subset \ker v$ alors pour tout x dans E,
 - (a) $\Box u(x) = 0 \implies v(x) = 0$

(c) $\Box u(x) = 0 \text{ et } v(x) = 0$

(b) $\square v(x) = 0 \implies u(x) = 0$

- (d) $\Box u(x) = 0 \text{ ou } v(x) = 0$
- 3. Soit F un sous-espace vectoriel de E, u un endomorphisme de E et v la restriction de u à F.
 - (a) $\square v \in \mathcal{L}(F)$

(c) $\square v \in \mathcal{L}(E, F)$

(b) $\square v \in \mathcal{L}(F, E)$

- (d) $\square v$ n'est pas forcément linéaire
- 4. Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. A quelle condition la restriction de u à F est-elle injective?
 - (a) \square si ker u = F

(c) \square si $F \cap \ker u = \{0\}$

(b) \square si $F \not\subset \ker u$

- (d) \square si $F \cap \ker u = \emptyset$
- 5. Si u est un endomorphisme de E, on a toujours
 - (a) $\square \ker u \subset \ker u^2$

(c) $\square \ker u = \ker u^2$

(b) $\square \ker u \supset \ker u^2$

- (d) $\square \ker u \cap \ker u^2 = \{0\}$
- 6. Si u, v sont deux endomorphismes de E tels que $v = u \circ v$, alors
 - (a) $\square \operatorname{Im} u = \operatorname{Im} v$

(c) $\square \operatorname{Im} v \subset \ker u$

(b) $\square u = \mathrm{I}d$

(d) $\square u|_{\operatorname{Im} v} = \operatorname{Id}$

G

I.2 En dimension finie

Dans toutes les questions qui suivent, sauf mention contraire, E est un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$.

- 7. Soit $v \in \mathcal{L}(E)$ et $u \in \mathcal{GL}(E)$. Le rang de $u \circ v \circ u^{-1}$ est égal à
 - (a) \square dim E

(c) $\square \operatorname{rg} u$

(b) $\square \operatorname{rg} v$

- (d) $\square \operatorname{rg} u + \operatorname{rg} v + \operatorname{rg} v^{-1}$
- 8. Soit u un endomorphisme de E de rang r. Quel est le rang maximal que peut avoir u^2 ?
 - (a) $\Box r^2$
- (b) $\square 2r$
- (c) □ r
- (d) $\Box r 2$

- 9. Si E est de dimension n, la dimension de $\mathcal{L}(E)$ est
 - (a) $\square n^2$
- (b) □ n
- (c) $\square 2^n$
- (d) $\square 2n$
- 10. Soient $u, v \in \mathcal{L}(E)$. Si $\operatorname{Im} u = \operatorname{Im} v$, que peut-on en déduire?
 - (a) $\square u = v$

(c) $\square \operatorname{rg} u = \operatorname{rg} v$

(b) $\square \ker u = \ker v$

- (d) \square u et v sont surjectives
- 11. Soit ϕ une forme linéaire non nulle de \mathbb{R}^2 dans \mathbb{R} . Alors ϕ est nécessairement
 - (a) \square injective

(c) \square constante

(b) □ surjective

- (d) □ un projecteur
- 12. Soient $u, v \in \mathcal{L}(E)$. On suppose que $\operatorname{rg}(v \circ u) = \operatorname{rg} u$. Alors
 - (a) $\square v$ est bijectif

(c) $\square \ker v \cap \operatorname{Im} u = \{0\}$

(b) $\square v$ est nul

(d) $\square \operatorname{Im} v \cap \operatorname{Im} u = \{0\}$

II/ Cours

1. Énoncer le théorème du rang.

.....

. On considère $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$. $(x;y) \longmapsto (2x+3y;-x+4y;5x-2y)$	
(a) L'application f peut-elle être surjective? Justifier.	
(b) Donner une base de $\text{Im}(f)$ et de $\text{ker}(f)$. f est-elle injective?	
	• •
	• •
(c) A-t-on $\mathbb{R}^{2} = \ker (f) \oplus \operatorname{Im} (f)$?	
	• •

Applications linéaires

Applications linéaires

Nom: Prénom:

I/ QCM

Une seule réponse exacte par question.

I.1 En dimension quelconque

- 1. Soit u un endomorphisme d'un espace vectoriel E. Quelle propriété est toujours vérifiée?
 - (a) $\square \operatorname{Im} u \subset \operatorname{Im} u^2$

(c) $\square \operatorname{Im} u \cap \operatorname{Im} u^2 = \{0\}$

(b) $\square \operatorname{Im} u \supset \operatorname{Im} u^2$

- (d) $\square \operatorname{Im} u + \operatorname{Im} u^2 = \operatorname{E}$
- 2. Si u, v sont deux endomorphismes de E tels que ker $u \subset \ker v$ alors pour tout x dans E,
 - (a) $\square u(x) = 0 \implies v(x) = 0$

(c) $\Box u(x) = 0$ et v(x) = 0

(b) $\square v(x) = 0 \implies u(x) = 0$

- (d) $\Box u(x) = 0 \text{ ou } v(x) = 0$
- 3. Soit F un sous-espace vectoriel de E, u un endomorphisme de E et v la restriction de u à F.
 - (a) $\square v \in \mathcal{L}(F)$

(c) $\square v \in \mathcal{L}(E, F)$

(b) $\square v \in \mathcal{L}(F, E)$

- (d) $\square v$ n'est pas forcément linéaire
- 4. Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. A quelle condition la restriction de u à F est-elle injective?
 - (a) \square si ker u = F

(c) \square si $F \cap \ker u = \{0\}$

(b) \square si F $\not\subset$ ker u

- (d) \square si $F \cap \ker u = \emptyset$
- 5. Si u est un endomorphisme de E, on a toujours
 - (a) $\square \ker u \subset \ker u^2$

(c) $\square \ker u = \ker u^2$

(b) $\square \ker u \supset \ker u^2$

- (d) $\square \ker u \cap \ker u^2 = \{0\}$
- 6. Si u, v sont deux endomorphismes de E tels que $v = u \circ v$, alors
 - (a) $\square \operatorname{Im} u = \operatorname{Im} v$

(c) $\square \operatorname{Im} v \subset \ker u$

(b) $\square u = \mathrm{I}d$

Lycée Jules Garnier

(d) $\square u|_{\operatorname{Im} v} = \operatorname{Id}$

Applications linéaires

I.2 En dimension finie

Dans toutes les questions qui suivent, sauf mention contraire, E est un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$.

- 7. Soit $v \in \mathcal{L}(E)$ et $u \in \mathcal{GL}(E)$. Le rang de $u \circ v \circ u^{-1}$ est égal à
 - (a) □ dim E

(c) $\square \operatorname{rg} u$

(b) $\square \operatorname{rg} v$

- (d) $\square \operatorname{rg} u + \operatorname{rg} v + \operatorname{rg} v^{-1}$
- 8. Soit u un endomorphisme de E de rang r. Quel est le rang maximal que peut avoir u^2 ?
 - (a) $\Box r^2$
- (b) $\square 2r$
- (c) □ r
- (d) $\square r 2$

- 9. Si E est de dimension n, la dimension de $\mathcal{L}(E)$ est
 - (a) $\square n^2$
- (b) □ *n*
- (c) $\square 2^n$
- (d) $\square 2n$
- 10. Soient $u, v \in \mathcal{L}(E)$. Si $\operatorname{Im} u = \operatorname{Im} v$, que peut-on en déduire?
 - (a) $\square u = v$

(c) $\Box \operatorname{rg} u = \operatorname{rg} v$

(b) $\square \ker u = \ker v$

- (d) \square u et v sont surjectives
- 11. Soit ϕ une forme linéaire non nulle de \mathbb{R}^2 dans \mathbb{R} . Alors ϕ est nécessairement
 - (a) \square injective

(c) \square constante

(b) \square surjective

- (d) \square un projecteur
- 12. Soient $u, v \in \mathcal{L}(E)$. On suppose que $\operatorname{rg}(v \circ u) = \operatorname{rg} u$. Alors
 - (a) $\square v$ est bijectif

1. Énoncer le théorème du rang.

(c) $\square \ker v \cap \operatorname{Im} u = \{0\}$

(b) $\square v$ est nul

(d) $\square \operatorname{Im} v \cap \operatorname{Im} u = \{0\}$

II/ Cours

2.	On o	considère $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$. $ (x;y;z) \longmapsto (x+2y+3z;4x-y+z) $
	(a)	L'application f peut-elle être injective? Justifier.
	(b)	Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. f est-elle surjective?
	(c)	A-t-on $\mathbb{R}^{3}=\ker\left(f\right)\oplus\operatorname{Im}\left(f\right)$?