Applications linéaires

Applications linéaires

I/ QCM

Une seule réponse exacte par question.

I.1 En dimension quelconque

- 1. Soit u un endomorphisme d'un espace vectoriel E. Quelle propriété est toujours vérifiée?
 - (a) $\square \operatorname{Im} u \subset \operatorname{Im} u^2$

(c) $\square \operatorname{Im} u \cap \operatorname{Im} u^2 = \{0\}$

(b) $\mathbf{\underline{V}} \operatorname{Im} u \supset \operatorname{Im} u^2$

- (d) $\square \operatorname{Im} u + \operatorname{Im} u^2 = \operatorname{E}$
- 2. Si u, v sont deux endomorphismes de E tels que ker $u \subset \ker v$ alors pour tout x dans E,
 - (a) $\[\square \] u(x) = 0 \implies v(x) = 0$

(c) $\Box u(x) = 0$ et v(x) = 0

(b) $\square v(x) = 0 \implies u(x) = 0$

- (d) $\Box u(x) = 0$ ou v(x) = 0
- 3. Soit F un sous-espace vectoriel de E, u un endomorphisme de E et v la restriction de u à F.
 - (a) $\square v \in \mathcal{L}(F)$

(c) $\square v \in \mathcal{L}(E, F)$

- (d) $\square v$ n'est pas forcément linéaire
- 4. Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. A quelle condition la restriction de u à F est-elle injective?
 - (a) \square si ker u = F

(c) $\mathbf{\nabla}$ si $\mathbf{F} \cap \ker u = \{0\}$

(b) \square si F $\not\subset$ ker u

- (d) \square si $F \cap \ker u = \emptyset$
- 5. Si u est un endomorphisme de E, on a toujours
 - (a) $\[\square \] \ker u \subset \ker u^2$

(c) $\square \ker u = \ker u^2$

(b) $\square \ker u \supset \ker u^2$

- (d) $\square \ker u \cap \ker u^2 = \{0\}$
- 6. Si u, v sont deux endomorphismes de E tels que $v = u \circ v$, alors
 - (a) $\square \operatorname{Im} u = \operatorname{Im} v$

(c) $\square \operatorname{Im} v \subset \ker u$

(b) $\square u = \mathrm{I}d$

(d) $\mathbf{V} u|_{\operatorname{Im} v} = \operatorname{Id}$

I.2 En dimension finie

Dans toutes les questions qui suivent, sauf mention contraire, E est un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$.

- 7. Soit $v \in \mathcal{L}(E)$ et $u \in \mathcal{GL}(E)$. Le rang de $u \circ v \circ u^{-1}$ est égal à
 - (a) \square dim E

(c) $\square \operatorname{rg} u$

(b) **☑** rg v

- (d) $\square \operatorname{rg} u + \operatorname{rg} v + \operatorname{rg} v^{-1}$
- 8. Soit u un endomorphisme de E de rang r. Quel est le rang maximal que peut avoir u^2 ?
 - (a) $\Box r^2$
- (b) $\square 2r$
- (c) **☑** r
- (d) $\square r 2$

- 9. Si E est de dimension n, la dimension de $\mathcal{L}(E)$ est
 - (a) $\sqrt{n^2}$
- (b) □ *n*
- (c) $\square 2^n$
- (d) $\square 2n$
- 10. Soient $u, v \in \mathcal{L}(E)$. Si $\operatorname{Im} u = \operatorname{Im} v$, que peut-on en déduire?
 - (a) $\square u = v$

(c) $\mathbf{\nabla} \operatorname{rg} u = \operatorname{rg} v$

(b) $\square \ker u = \ker v$

- (d) \square u et v sont surjectives
- 11. Soit ϕ une forme linéaire non nulle de \mathbb{R}^2 dans \mathbb{R} . Alors ϕ est nécessairement
 - (a) □ injective

(c) □ constante

(b) **☑** surjective

- (d) \square un projecteur
- 12. Soient $u, v \in \mathcal{L}(E)$. On suppose que $\operatorname{rg}(v \circ u) = \operatorname{rg} u$. Alors
 - (a) $\square v$ est bijectif

(c) $\mathbf{\nabla} \ker v \cap \operatorname{Im} u = \{0\}$

(b) $\square v$ est nul

(d) $\square \operatorname{Im} v \cap \operatorname{Im} u = \{0\}$

II/ Cours

1. Énoncer le théorème du rang.

confer cours

- 2. On considère $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ $(x\,;y) \longmapsto (2x+3y\,;-x+4y\,;5x-2y)$
 - (a) L'application f peut-elle être surjective? Justifier.

D'après le théorème du rang, $2 = \dim (\ker (f)) + \operatorname{rg}(f) \operatorname{donc} \operatorname{rg}(f) \leqslant 2 < \dim (\mathbb{R}^3)$ et f ne peut être surjective.

(b) Donner une base de Im(f) et de ker(f). f est-elle injective?

$$\operatorname{Im}(f) = \operatorname{vect}(f(1,0), f(0,1)) = \operatorname{vect}\left(\begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix}, \begin{pmatrix} 3\\ 4\\ -2 \end{pmatrix}\right).$$

Comme $\frac{3}{2} \neq \frac{4}{-1}$, les deux vecteurs non nuls sont libres. Ils forment une base de Im(f) qui est de dimension 2 ce qui confirme que f n'est pas surjective.

$$(x\,;y)\in\ker\left(f\right)\iff \begin{cases} 2x+3y=0\\ -x+4y=0\\ 5x-2y=0 \end{cases} \iff \begin{cases} -x+4y=0\\ 11y=0 \end{cases} \iff (x\,;y)=(0\,;0)\,.$$

Donc $\ker(f) = \{0\}$ et f est injective.

(c) A-t-on $\mathbb{R}^2 = \ker(f) \oplus \operatorname{Im}(f)$?

 $\operatorname{Im}(f)$ n'est pas dans \mathbb{R}^2 donc difficile! Par contre, cela reste vrai avec les dimensions.

Applications linéaires

Applications linéaires

I/ QCM

Une seule réponse exacte par question.

I.1 En dimension quelconque

- 1. Soit u un endomorphisme d'un espace vectoriel E. Quelle propriété est toujours vérifiée?
 - (a) $\square \operatorname{Im} u \subset \operatorname{Im} u^2$

(c) $\square \operatorname{Im} u \cap \operatorname{Im} u^2 = \{0\}$

(b) $\mathbf{\underline{V}} \operatorname{Im} u \supset \operatorname{Im} u^2$

- (d) $\square \operatorname{Im} u + \operatorname{Im} u^2 = \operatorname{E}$
- 2. Si u, v sont deux endomorphismes de E tels que ker $u \subset \ker v$ alors pour tout x dans E,
 - (a) $\mathbf{u}(x) = 0 \implies v(x) = 0$

(c) $\Box u(x) = 0$ et v(x) = 0

(b) $\square v(x) = 0 \implies u(x) = 0$

- (d) $\Box u(x) = 0$ ou v(x) = 0
- 3. Soit F un sous-espace vectoriel de E, u un endomorphisme de E et v la restriction de u à F.
 - (a) $\square v \in \mathcal{L}(F)$

(c) $\square v \in \mathcal{L}(E, F)$

(b) $\mathbf{V} \in \mathcal{L}(\mathbf{F}, \mathbf{E})$

- (d) $\square v$ n'est pas forcément linéaire
- 4. Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. A quelle condition la restriction de u à F est-elle injective?
 - (a) \square si ker u = F

(c) $\mathbf{\nabla}$ si $\mathbf{F} \cap \ker u = \{0\}$

(b) \square si F $\not\subset$ ker u

- (d) \square si $F \cap \ker u = \emptyset$
- 5. Si u est un endomorphisme de E, on a toujours
 - (a) $\mathbf{\nabla} \ker u \subset \ker u^2$

(c) $\square \ker u = \ker u^2$

(b) $\square \ker u \supset \ker u^2$

- (d) $\square \ker u \cap \ker u^2 = \{0\}$
- 6. Si u, v sont deux endomorphismes de E tels que $v = u \circ v$, alors
 - (a) $\square \operatorname{Im} u = \operatorname{Im} v$

(c) $\square \operatorname{Im} v \subset \ker u$

(b) $\square u = \mathrm{I}d$

(d) $\mathbf{\underline{V}} u|_{\operatorname{Im} v} = \operatorname{Id}$

Applications linéaires

I.2 En dimension finie

Dans toutes les questions qui suivent, sauf mention contraire, E est un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$.

- 7. Soit $v \in \mathcal{L}(E)$ et $u \in \mathcal{GL}(E)$. Le rang de $u \circ v \circ u^{-1}$ est égal à
 - (a) \square dim E

(c) $\square \operatorname{rg} u$

(b) **☑** rg v

- (d) $\square \operatorname{rg} u + \operatorname{rg} v + \operatorname{rg} v^{-1}$
- 8. Soit u un endomorphisme de E de rang r. Quel est le rang maximal que peut avoir u^2 ?
 - (a) $\Box r^2$
- (b) $\square 2r$
- (c) **☑** r
- (d) $\square r 2$

- 9. Si E est de dimension n, la dimension de $\mathcal{L}(E)$ est
 - (a) $\sqrt{n^2}$
- (b) □ *n*
- (c) $\square 2^n$
- (d) $\square 2n$
- 10. Soient $u, v \in \mathcal{L}(E)$. Si $\operatorname{Im} u = \operatorname{Im} v$, que peut-on en déduire?
 - (a) $\square u = v$

(c) $\mathbf{\nabla} \operatorname{rg} u = \operatorname{rg} v$

(b) $\square \ker u = \ker v$

- (d) \square u et v sont surjectives
- 11. Soit ϕ une forme linéaire non nulle de \mathbb{R}^2 dans \mathbb{R} . Alors ϕ est nécessairement
 - (a) □ injective

(c) □ constante

(b) **☑** surjective

- (d) \square un projecteur
- 12. Soient $u, v \in \mathcal{L}(E)$. On suppose que $\operatorname{rg}(v \circ u) = \operatorname{rg} u$. Alors
 - (a) $\square v$ est bijectif

(c) \square ker $v \cap \operatorname{Im} u = \{0\}$

(b) $\square v$ est nul

(d) $\square \operatorname{Im} v \cap \operatorname{Im} u = \{0\}$

II/ Cours

1. Énoncer le théorème du rang.

confer cours

- 2. On considère $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x;y;z) \longmapsto (x+2y+3z;4x-y+z)$
 - (a) L'application f peut-elle être injective? Justifier.

D'après le théorème du rang, dim $(\ker(f)) = 3 - \operatorname{rg}(f) \geqslant 3 - 2 = 1 > 0$ et f ne peut être injective.

(b) Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. f est-elle surjective?

$$\begin{aligned} (x\,;y\,;z) \in \ker\left(f\right) &\iff \begin{cases} x+2y+3z=0 \\ 4x-&y+&z=0 \end{cases} &\iff \begin{cases} x+2y+&3z=0 \\ &9y+11z=0 \end{cases} &\iff \begin{cases} 11x-5y &=0 \\ &9y+11z=0 \end{cases} \\ &\iff \begin{cases} x &=\frac{5}{11}y \\ y &=y \\ z &=-\frac{11}{9}y \end{cases} \end{aligned}$$

Donc $\ker(f) = \operatorname{vect}\begin{pmatrix} 5\\11\\-9 \end{pmatrix}$ qui est donc de dimension 1 ce qui confirme que f n'est pas injective.

D'après le théorème du rang, on sait alors que rg (f)=2. Il suffit donc de trouver deux vecteurs libres de $\operatorname{Im}(f)$ ce qui est le cas avec $f(1;0;0)=\begin{pmatrix}1\\4\end{pmatrix}$ et $f(0;1;0)=\begin{pmatrix}2\\-1\end{pmatrix}$.

Une base de $\operatorname{Im}(f)$ est donc $\left(\begin{pmatrix}1\\4\end{pmatrix};\begin{pmatrix}2\\-1\end{pmatrix}\right)$ donc $\operatorname{Im}(f)$, sev de \mathbb{R}^2 de dimension 2, est donc \mathbb{R}^2 tout entier *i.e.* f est surjective.

(c) A-t-on $\mathbb{R}^3 = \ker(f) \oplus \operatorname{Im}(f)$?

 $\operatorname{Im}(f)$ n'est pas dans \mathbb{R}^3 donc difficile! Par contre, cela reste vrai avec les dimensions.