Applications linéaires

Applications linéaires

Problème : Dans tout ce problème, E et F désignent deux \mathbb{R} -espaces vectoriels. De plus, pour tout application linéaire f de $\mathcal{L}(\mathcal{E},\mathcal{F})$, on note :

$$\begin{split} \mathbf{A}_f &= \{h \in \mathcal{L}(\mathbf{F}, \mathbf{E}), \ f \circ h \circ f = 0\}, \qquad \mathbf{B}_f = \{h \in \mathcal{L}(\mathbf{F}, \mathbf{E}), \ \mathrm{Im}\,(f) \subset \ker\,(h)\} \\ \mathrm{et}\ \mathbf{C}_f &= \{h \in \mathcal{L}(\mathbf{F}, \mathbf{E}), \ \mathrm{Im}\,(h) \subset \ker\,(f)\}. \end{split}$$

Les trois parties de ce problème sont indépendantes.

Partie 1

Dans cette partie seulement, on pose $E = F = \mathbb{R}^2$ et

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & (2x-4y,-3x+6y) \end{array} \right. \quad \text{et } g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & (2x-2y,x-y) \end{array} \right.$$

- 1. Montrer que f et g sont des endomorphismes de \mathbb{R}^2 .
- 2. Déterminer $u \in \mathbb{R}^2$ tel que $\ker(f) = \text{Vect}(u)$.
- 3. Déterminer $v \in \mathbb{R}^2$ tel que $\operatorname{Im}(f) = \operatorname{Vect}(v)$.
- 4. Montrer que $g \in A_f$.

Partie 2

On note
$$\mathcal{T}_f: \left\{ \begin{array}{ccc} \mathcal{L}(\mathcal{F},\mathcal{E}) & \to & \mathcal{L}(\mathcal{E},\mathcal{F}) \\ h & \mapsto & f \circ h \circ f \end{array} \right.$$

- 1. Montrer que \mathcal{T}_f est bien définie et linéaire.
- 2. Montrer que A_f est un \mathbb{R} -espace vectoriel.
- 3. (a) Montrer que $B_f \subset A_f$.
 - (b) Montrer que si f est injective alors $B_f = A_f$.
- 4. (a) Montrer que $C_f \subset A_f$.
 - (b) Montrer que si f est surjective alors $C_f = A_f$.
- 5. Montrer que si f est bijective alors \mathcal{T}_f est bijective.

Partie 3

Dans cette partie, on considère une application linéaire g de $\mathcal{L}(F, E)$ telle que

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$.

- 1. Montrer que $\operatorname{Im}(f)$ et $\ker(g)$ sont des sous-espaces vectoriels de F.
- 2. Montrer que $\operatorname{Im}(f)$ et $\ker(g)$ sont supplémentaires dans F.