Applications linéaires

Partie 1

1. Soient $u = (x, y) \in \mathbb{R}^2$, $v = (x', y') \in \mathbb{R}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On a $\alpha u + \beta v = (\alpha x + \beta x, \alpha y + \beta y')$.

Dès lors, on a

$$\begin{split} f(\alpha u + \beta v) &= f(\alpha x + \beta x', \alpha y + \beta y') = (2(\alpha x + \beta x') - 4(\alpha y + \beta y'), -3(\alpha x + \beta x') + 6(\alpha y + \beta y')) \\ &= (\alpha (2x - 4y) + \beta (2x' - 4y'), \alpha (-3x + 6y) + \beta (-3x' + 6y')) \\ &= \alpha (2x - 4y, -3x + 6y) + \beta (2x' - 4y', -3x' + 6y') \\ &= \alpha f(x, y) + \beta f(x', y') = \alpha f(u) + \beta f(v) \end{split}$$

et

$$\begin{split} g(\alpha u + \beta v) &= g(\alpha x + \beta x', \alpha y + \beta y') = (2(\alpha x + \beta x') - 2(\alpha y + \beta y'), (\alpha x + \beta x') - (\alpha y + \beta y')) \\ &= (\alpha (2x - 2y) + \beta (2x' - 2y'), \alpha (x - y) + \beta (x' - y')) \\ &= \alpha (2x - 2y, x - y) + \beta (2x' - 2y', x' - y') \\ &= \alpha g(x, y) + \beta g(x', y') = \alpha g(u) + \beta g(v). \end{split}$$

Les fonctions f et g sont donc linéaires.

2. Soit $w=(x,y)\in\mathbb{R}^2$. On a

$$w \in \ker(f) \iff f(w) = 0 \iff (2x - 4y, -3x + 6y) = (0, 0) \iff \begin{cases} 2x - 4y = 0 \\ -3x + 6y = 0 \end{cases} \iff x = 2y$$
$$\iff w = (2y, y) = y(2, 1) \iff w \in \text{Vect}((2, 1)).$$

En posant $u = (2, 1) \in \mathbb{R}^2$, on obtient $\ker(f) = \text{Vect}(u)$.

3. On remarque d'ores et déjà que, pour tout $(x,y) \in \mathbb{R}^2$, on a

$$f(x,y) = (2(x-2y), -3(x-2y)) = (x-2y) \cdot (2, -3)$$

donc, en posant v = (2, -3), on a $\operatorname{Im}(f) \subset \operatorname{Vect}(v)$.

Soit $w \in \text{Vect}(v)$. Il existe $\lambda \in \mathbb{R}$ tel que $w = (2\lambda, -3\lambda)$. On peut écrire

$$w = (2\lambda, -3\lambda) = f(\lambda, 0)$$
 donc $w \in \text{Im}(f)$.

Ainsi $Vect(v) \subset Im(f)$ et par double inclusion, on obtient Im(f) = Vect(v).

4. Soit $(x,y) \in \mathbb{R}^2$. On a

$$\begin{split} f\circ g\circ f(x,y)&=f\circ g(f(x,y))=f\circ g(2x-4y,-3x+6y)=f(g(2x-4y,-3x+6y))\\ &=f(2(2x-4y)-2(-3x+6y),(2x-4y)-(-3x+6y))=f(10x-20y,5x-10y)\\ &=(2(10x-20y)-4(5x-10y),-3(10x-20y)+6(5x-10y))\\ &=(0,0) \end{split}$$

donc $f \circ g \circ f = 0_{\mathcal{L}(\mathbb{R}^2)}$, ie g appartient à A_f .

Partie 2

1. Soient $(h_1, h_2) \in \mathcal{L}(F, E)^2$ et $(\lambda_1, \lambda_2) \in \mathbb{R}^2$. La fonction f étant linéaire, on a

$$\begin{split} \mathbf{T}_f(\lambda_1 \cdot h_1 + \lambda_2 \cdot h_2) &= f \circ (\lambda_1 \cdot h_1 + \lambda_2 \cdot h_2) \circ f = f \circ (\lambda_1 \cdot h_1 \circ f + \lambda_2 \cdot h_2 \circ f) \\ &= \lambda_1 \cdot f \circ h_1 \circ f + \lambda_2 \cdot f \circ h_2 \circ f \\ &= \lambda_1 \cdot \mathbf{T}_f(h_1) + \lambda_2 \cdot \mathbf{T}_f(h_2). \end{split}$$

Par conséquent, l'application T_f est une application linéaire.

- 2. On a $A_f = \ker(T_f)$ donc A_f est un sous-espace vectoriel de $\mathcal{L}(F, E)$ en tant que noyau d'une application linéaire.
- 3. (a) Soit $h \in B_f$ donc $\operatorname{Im}(f) \subset \ker(h)$. Pour tout $x \in E$, on a $f(x) \in \operatorname{Im}(f) \subset \ker(h)$ donc

$$h\circ f(x)=h(f(x))=0 \text{ puis } f\circ h\circ f(x)=f(h\circ f(x))=f(0)=0.$$

Par conséquent, l'application $f \circ h \circ f$ est la fonction nulle, ie $f \circ h \circ f = 0$. Il s'ensuit $h \in \mathcal{A}_f$ de quoi l'on déduit $\mathcal{B}_f \subset \mathcal{A}_f$.

(b) On a déjà montré lors de la question précédente $B_f \subset A_f$. On montre maintenant l'inclusion $A_f \subset B_f$ sous l'hypothèse f injective, ie ker $(f) = \{0\}$.

Soit $h \in A_f$. Montrons que $\text{Im}(f) \subset \text{ker}(h)$. Soit $y \in \text{Im}(f)$. Il existe $x \in E$ tel que y = f(x). Dès lors,

$$f(h(y)) = f(h(f(x))) = f \circ h \circ f(x) = 0 \text{ car } h \in \mathcal{A}_f.$$

On obtient $h(y) \in \ker(f)$. La fonction f étant injective, on a $\ker(f) = \{0\}$ donc h(y) = 0, ie $y \in \ker(h)$. Il s'ensuit $\operatorname{Im}(f) \subset \ker(h)$, autrement dit $h \in B_f$.

Par double inclusion, si f est injective, on a $A_f = B_f$.

4. (a) Soit $h \in C_f$, ie $\operatorname{Im}(h) \subset \ker(f)$. Pour tout $y \in F$, on a $h(y) \in \operatorname{Im}(h) \subset \ker(f)$, donc $f \circ h(y) = f(h(y)) = 0$. Dès lors, pour tout $x \in E$, on a

$$f\circ h\circ f(x)=f\circ h(\underbrace{f(x)}_{\in F})=0.$$

Par conséquent, l'application $f \circ h \circ f$ est la fonction nulle, ie $f \circ h \circ f = 0$. Il s'ensuit $h \in \mathcal{A}_f$ de quoi l'on déduit $\mathcal{C}_f \subset \mathcal{A}_f$.

(b) On a déjà montré lors de la question précédente $\mathcal{C}_f\subset\mathcal{A}_f$. On montre maintenant l'inclusion $\mathcal{A}_f\subset\mathcal{C}_f$ sous l'hypothèse f surjective.

Soit $h \in A_f$. Montrons que $\operatorname{Im}(h) \subset \ker(f)$. Soit $x \in \operatorname{Im}(h)$. Il existe $y \in F$ tel que x = h(y). On a $y \in F$ et f surjective donc il existe $x' \in E$ tel que y = f(x'). Dès lors,

$$f(x) = f(h(y)) = f(h(f(x'))) = f \circ h \circ f(x') = 0 \text{ car } h \in \mathcal{A}_f.$$

On obtient ainsi $x \in \ker(f)$. Il s'ensuit $\operatorname{Im}(h) \subset \ker(f)$, autrement dit $h \in C_f$.

Par double inclusion, si f est surjective, on a $A_f = B_f$.

5. Si f est bijective alors il existe $f^{-1} \in \mathcal{L}(F, E)$ tel que $f \circ f^{-1} = \mathrm{Id}_F$ et $f^{-1} \circ f = \mathrm{Id}_E$. On définit alors

$$\mathbf{T}_{f-1}: \left\{ \begin{array}{ccc} \mathcal{L}(\mathbf{E},\mathbf{F}) & \to & \mathcal{L}(\mathbf{F},\mathbf{E}) \\ h & \mapsto & f^{-1} \circ h \circ f^{-1} \end{array} \right..$$

2

Lycée Jules Garnier

Dès lors, on a $T_f \circ T_{f^{-1}} : \mathcal{L}(E, F) \to \mathcal{L}(E, F)$ et pour tout $h \in \mathcal{L}(E, F)$, on a

$$\begin{split} \mathbf{T}_f \circ \mathbf{T}_{f^{-1}}(h) &= \mathbf{T}_f(f^{-1} \circ h \circ f^{-1}) = f \circ (f^{-1} \circ h \circ f^{-1}) \circ f = (f \circ f^{-1}) \circ h \circ (f^{-1} \circ f) \\ &= \mathrm{Id}_{\mathbf{F}} \circ h \circ \mathrm{Id}_{\mathbf{E}} = h \end{split}$$

donc $T_f \circ T_{f^{-1}} = Id_{\mathcal{L}(E,F)}$. De même, pour tout $h \in \mathcal{L}(F,E)$, on a

$$\begin{split} \mathbf{T}_{f^{-1}} \circ \mathbf{T}_f(h) &= \mathbf{T}_{f^{-1}}(f \circ h \circ f) = f^{-1} \circ (f \circ h \circ f) \circ f^{-1} = (f^{-1} \circ f) \circ h \circ (f \circ f^{-1}) \\ &= \mathbf{Id}_{\mathbf{E}} \circ h \circ \mathbf{Id}_{\mathbf{F}} = h \end{split}$$

donc $T_{f^{-1}} \circ T_f = Id_{\mathcal{L}(F,E)}$. Par conséquent, T_f est une application bijective.

Partie 3

1. Le noyau et l'image d'une application linéaire étant des espaces vectoriels, on déduit que ${\rm Im}\,(f)$ et ${\rm ker}\,(g)$ sont des sous-espaces vectoriels de F.

Méthode 1:

— On montre $\operatorname{Im}(f) \cap \ker(g) = \{0\}.$

Soit $y \in \text{Im}(f) \cap \text{ker}(g)$. On a $y \in \text{Im}(f)$ donc il existe $x \in \text{E}$ tel que y = f(x). De plus, on a $y \in \text{ker}(g)$ donc g(y) = 0. Alors

$$y=f(x)=f\circ g\circ f(x)=f\circ g(f(x))=f\circ g(y)=f(g(y))=f(0)=0.$$

Ainsi, on obtient $\operatorname{Im}(f) \cap \ker(g) \subset \{0\}$. L'inclusion $\{0\} \subset \operatorname{Im}(f) \cap \ker(g)$ étant toujours vraie, il vient par double inclusion $\operatorname{Im}(f) \cap \ker(g) = \{0\}$.

— On montre $\operatorname{Im}(f) + \ker(g) = F$. Soit $y \in F$.

Analyse : Supposons qu'il existe $b \in \text{Im}(f)$ et $b' \in \text{ker}(g)$ tel que y = b + b'. On a $b \in \text{Im}(f)$ donc il existe $a \in E$ tel que b = f(a). Dès lors,

$$b = f(a) = f \circ g \circ f(a) = f(g(y - b')) = f(g(y)) - f(g(b')) = f(g(y)) - 0 = f \circ g(x)$$

$$\operatorname{car} b' \in \ker(g)$$

puis
$$b' = y - b = y - f \circ g(y)$$
.

Synthèse : On pose $b = f \circ q(y)$ et $b' = y - f \circ q(y)$. Se faisant :

- on a $b+b'=f\circ g(y)+y-f\circ g(y)=y,$
- on a $b = f \circ g(y) = f(g(y)) \in \operatorname{Im}(f)$,
- on a $g(b')=g(y-f\circ g(y))=g(y)-g\circ f\circ g(y)=g(y)-g(y)=0$ donc $b'\in\ker(g)$.

Par conséquent, on a $y \in \text{Im}(f) + \text{ker}(g)$ puis $F \subset \text{Im}(f) + \text{ker}(g)$. Par ailleurs, Im(f) et ker(g) étant des sous-espaces vectoriels de F, on a également $\text{Im}(f) + \text{ker}(g) \subset F$. Par double inclusion, il vient Im(f) + ker(g) = F.

— On a ainsi $\operatorname{Im}(f) + \ker(g) = \operatorname{F} \operatorname{et} \operatorname{Im}(f) \cap \ker(g) = \{0\}$ donc $\operatorname{Im}(f) \oplus \ker(g) = \operatorname{F} \operatorname{Autrement}$ dit, $\operatorname{Im}(f)$ et $\ker(g)$ sont des sous-espaces vectoriels supplémentaires dans F .

Méthode 2:

— L'application $f \circ g : F \to F$ est linéaire en tant que composée d'applications linéaires et de plus, elle vérifie

$$(f \circ g) \circ (f \circ g) = (f \circ g \circ f) \circ g = f \circ g.$$

Par conséquent, l'endomorphisme $f \circ g$ est la projection sur $\operatorname{Im}(f \circ g)$ de direction $\ker(f \circ g)$. En particulier, les sous-espaces vectoriels $\operatorname{Im}(f \circ g)$ et $\ker(f \circ g)$ sont supplémentaires dans F, ie $\operatorname{Im}(f \circ g) \oplus \ker(f \circ g) = F$. — On montre que $\operatorname{Im}(f \circ g) = \operatorname{Im}(f)$. On a toujours $\operatorname{Im}(f \circ g) \subset \operatorname{Im}(f)$. Réciproquement, si $y \in \operatorname{Im}(f)$, il existe $x \in \operatorname{E}$ tel que y = f(x). Sachant que $f = f \circ g \circ f$, il vient

$$y = f(x) = f \circ g \circ f(x) = f \circ g(f(x)) \in \operatorname{Im} (f \circ g).$$

- Ainsi, on a $\operatorname{Im}(f) \subset \operatorname{Im}(f \circ g)$. Par double inclusion, on obtient $\operatorname{Im}(f) = \operatorname{Im}(f \circ g)$.
- On montre que $\ker(f \circ g) = \ker(g)$. On a toujours $\ker(g) \subset \ker(f \circ g)$. Réciproquement, soit $x \in \ker(f \circ g)$ ie $f \circ g(x) = 0_F$. Sachant que $g = g \circ f \circ g$, on a

$$g(x) = g \circ f \circ g(x) = g(f \circ g(x)) = g(0_{\mathrm{F}}) = 0_{\mathrm{E}} \ \mathrm{donc} \ x \in \mathrm{ker} \ (g).$$

- On a ainsi $\ker(f \circ g) \subset \ker(g)$. Par double inclusion, on obtient $\ker(g) = \ker(f \circ g)$.
- Par conséquent, on a $\operatorname{Im}(f \circ g) \oplus \ker(f \circ g) = \operatorname{F}, \operatorname{Im}(f) = \operatorname{Im}(f \circ g)$ et $\ker(g) = \ker(f \circ g)$ donc

$$\operatorname{Im}(f) \oplus \ker(q) = F.$$

Lycée Jules Garnier F. PUCCI