Zeta(2m)

On se propose dans ce devoir de trouver la valeur de $\zeta(2m) = \sum_{k=1}^{+\infty} \frac{1}{k^{2m}}$.

I. Polynômes de Bernoulli

1. Soit $f:[0,1]\to\mathbb{R}$ une application continue.

Montrer l'existence et l'unicité d'une application $F:[0,1]\to\mathbb{R}$ de classe \mathscr{C}^1 telle que :

$$\begin{cases} \forall x \in [0,1], & \mathbf{F}'(x) = f(x) \\ \int_0^1 \mathbf{F}(t) \, \mathrm{d}t = 0. \end{cases}$$

Correction : Soit $f:[0,1] \longmapsto \mathbb{R}$ une application continue.

f admet donc sur l'**intervalle** [0,1] une infinité de primitives, toutes de la forme F_0+k où F_0 est l'une d'entre elles, et $k\in\mathbb{R}$.

Pour $k \in \mathbb{R}$, et posons $F = F_0 + k$.

— F est une primitive de f continue, donc F est de classe \mathscr{C}^1 sur [0,1].

$$-\int_0^1 \mathbf{F}(t) \, \mathrm{d}t = 0 \iff \int_0^1 (\mathbf{F}_0(t) + k) \, \mathrm{d}t = 0 \iff \int_0^1 \mathbf{F}_0(t) \, \mathrm{d}t + k = 0 \iff k = -\int_0^1 \mathbf{F}_0(t) \, \mathrm{d}t.$$

On en déduit qu'il existe une et une seule application $F:[0,1]\to\mathbb{R}$ de classe \mathscr{C}^1 telle que :

$$\begin{cases} \forall x \in [0,1], & \mathbf{F}'(x) = f(x) \\ \int_0^1 \mathbf{F}(t) \, \mathrm{d}t = 0 \end{cases}$$

Il s'agit de l'application $\mathcal{F}:x\longmapsto\mathcal{F}_0(x)-\int_0^1\mathcal{F}_0(t)\,\mathrm{d}t.$

2. Montrer l'existence et l'unicité d'une suite $(\mathbf{B}_n)_{n\in\mathbb{N}}$ de polynômes tels que $\mathbf{B}_0=1$ et :

$$\forall\,n\in\mathbb{N},\quad \begin{cases} \forall\,x\in[0,1],\quad \mathbf{B}_{n+1}'(x)=(n+1)\mathbf{B}_n(x)\\ \int_0^1\mathbf{B}_{n+1}(t)\,\mathrm{d}t=0. \end{cases}$$

Calculer B_n pour $n \in [0,6]$. Les B_n sont appelés polynômes de Bernoulli.

Correction : Montrons par récurrence l'existence et l'unicité d'une suite $(\mathbf{B}_n)_{n\in\mathbb{N}}$ de polynômes tels que :

$$\begin{cases} \mathbf{B}_0 = 1 \\ \forall \, n \in \mathbb{N}, \forall \, x \in [0, 1], \quad \mathbf{B}_{n+1}'(x) = (n+1)\mathbf{B}_n(x) \\ \forall \, n \in \mathbb{N}, \quad \int_0^1 \mathbf{B}_{n+1}(t) \, \mathrm{d}t = 0 \end{cases}$$

- On pose $B_0 = 1$.
- Supposons que pour un entier $n \in \mathbb{N}$, on dispose d'un polynôme B_n .

La fonction polynomiale $(n+1){\rm B}_n$ est continue sur [0,1]. D'après la première question, il existe une unique fonction ${\rm F}$ telle que :

$$\begin{cases} \forall\,x\in[0,1],\quad \mathbf{F}'(x)=(n+1)\tilde{\mathbf{B}}_n(x)\\ \int_0^1 \tilde{\mathbf{F}}(t)\,\mathrm{d}t=0 \end{cases}$$

On a vu que la fonction F est une primitive de la fonction polynomiale $(n+1)\tilde{B}_n$. Elle est donc elle-même polynomiale. On peut poser $F=\tilde{B}_{n+1}$, avec B_{n+1} l'unique polynôme associé à cette fonction.

On définit ainsi par récurrence une unique suite de polynômes (les polynômes de Bernoulli) vérifiant les conditions données. Les B_n pour $n \in [\![0,6]\!]$ sont :

$$B_0 = 1$$

$$\mathbf{B}_1 = \mathbf{X} - \frac{1}{2}$$

$${\bf B}_2 = {\bf X}^2 - {\bf X} + \frac{1}{6}$$

$${\bf B}_3 = {\bf X}^3 - \frac{3}{2}{\bf X}^2 + \frac{1}{2}{\bf X}$$

$$B_4 = X^4 - 2X^3 + X^2 - \frac{1}{30}$$

$$B_5 = X^5 - \frac{5}{2}X^4 + \frac{5}{3}X^3 - \frac{1}{6}X$$

$$\mathbf{B}_6 = \mathbf{X}^6 - 3\mathbf{X}^5 + \frac{5}{2}\mathbf{X}^4 - \frac{1}{2}\mathbf{X}^2 + \frac{1}{42}$$

3. Préciser le degré et le coefficient dominant de \mathbf{B}_n .

Correction : Montrons par récurrence que pour tout n, le polynôme \mathbf{B}_n est de degré n et de coefficient dominant 1.

- $B_0 = 1$ donc la propriété est vraie au rang 0.
- Supposons qu'il existe un entier n tel que $\mathbf{B}_n = \mathbf{X}^n + \dots$ (les pointillés représentent un polynôme de degré < n.

Alors, par construction de la suite ${\bf B}_{n+1}'=(n+1){\bf B}_n=(n+1){\bf X}^n+\dots$

- Par intégration, $B'_{n+1} = X^{n+1} + \dots$: la propriété est encore vraie au rang n+1.
- Initialisée pour n=0 et héréditaire, la propriété est donc vraie pour tout $n \in \mathbb{N}$.
- 4. (a) Pour $n \ge 2$, établir la relation $B_n(1) = B_n(0)$.

$$\mbox{D'où } \int_0^1 n \mbox{B}_{n-1}(t) \, \mathrm{d}t = 0 \mbox{, i.e. } \int_0^1 \mbox{B}_n'(t) \, \mathrm{d}t = 0 \mbox{ i.e. } \left[\mbox{B}_n(t) \right]_0^1 = 0 \mbox{, soit } \mbox{B}_n(1) - \mbox{B}_n(0) = 0 \mbox{ } \\ \forall \, n \geqslant 2, \quad \mbox{B}_n(1) = \mbox{B}_n(0).$$

(b) Pour $n \in \mathbb{N}^{\star}$ et $k \in [\![0,n]\!]$, exprimer $\mathbf{B}_n^{(k)}$ en fonction de \mathbf{B}_{n-k} .

Correction : Soit $n \in \mathbb{N}^*$.

Montrons par récurrence finie sur $k \in [\![0,n]\!]$ que $\mathbf{B}_n^{(k)} = \frac{n!}{(n-k)!} \mathbf{B}_{n-k}.$

- Pour k=0, on a bien $\frac{n!}{(n-k)!}\mathbf{B}_{n-k}=\frac{n!}{n!}\mathbf{B}_n=\mathbf{B}_n=\mathbf{B}_n^{(0)}.$
- Supposons que l'on ait pour $k \in \llbracket 0, n-1 \rrbracket$, la formule $\mathbf{B}_n^{(k)} = \frac{n!}{(n-k)!} \mathbf{B}_{n-k}$.

$$\begin{split} \text{Alors } \mathbf{B}_n^{(k+1)} &= \left(\mathbf{B}_n^{(k)}\right)' = \left(\frac{n!}{(n-k)!}\mathbf{B}_{n-k}\right)' = \frac{n!}{(n-k)!}\mathbf{B}_{n-k}' \\ &= \frac{n!}{(n-k)!}(n-k)\mathbf{B}_{n-k-1} = \frac{n!}{[n-(k+1)]!}\mathbf{B}_{n-(k+1)}. \end{split}$$

— Vraie pour k=0 et héréditaire, la propriété est donc vraie pour tout $k\in \llbracket 0\,;n
rbracket$

$$\forall\,n\in\mathbb{N}^\star,\forall\,k\in[\![0,n]\!],\quad \mathbf{B}_n^{(k)}=\frac{n!}{(n-k)!}\mathbf{B}_{n-k}.$$

(c) Avec la formule de Taylor, établir pour $n\geqslant 2,$ $\sum_{k=0}^{n-1}\binom{n}{k}\mathrm{B}_k(0)=0.$

D'après la formule précédente, on a donc $\mathbf{B}_n = \sum_{k=0}^n \frac{\frac{n!}{(n-k)!} \mathbf{B}_{n-k}(0)}{k!} \mathbf{X}^k.$

$$\mathbf{B}_n = \sum_{k=0}^n \binom{n}{k} \mathbf{B}_{n-k}(0) \mathbf{X}^k. \tag{XXV.1}$$

En particulier, $\mathbf{B}_n(1) = \sum_{k=0}^n \binom{n}{k} \mathbf{B}_{n-k}(0).$

On peut poser k'=n-k dans la somme : $\mathbf{B}_n(1)=\sum_{k'=0}^n \binom{n}{n-k'} \mathbf{B}_{k'}(0).$

On renomme k' en k et on utilise la formule de symétrie des coefficients binomiaux.

$$\mathbf{B}_n(1) = \sum_{k=0}^n \binom{n}{k} \mathbf{B}_k(0).$$

D'où
$$\mathbf{B}_n(1) = \mathbf{B}_n(0) + \sum_{k=0}^{n-1} \binom{n}{k} \mathbf{B}_k(0).$$

Or, $n\geqslant 2$ donc on a $\mathrm{B}_n(1)=\mathrm{B}_n(0).$

Finalement,

$$\forall\, n\geqslant 2, \quad \sum_{k=0}^{n-1}\binom{n}{k}\mathcal{B}_k(0)=0.$$

Commentaires : La formule (XXV.1) montre que la seule connaissance des nombres de Bernoulli $B_k(0)$ permet de connaitre entièrement les polynômes de Bernoulli B_n .

(d) En déduire la valeur exacte des $B_n(0)$ pour $n \in [0, 10]$. Les $B_n(0)$ sont appelés nombres de Bernoulli.

Correction: D'après la question (2), on a

n	0	1	2	3	4	5	6
$B_n(0)$	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$

— Pour avoir
$$\mathbf{B}_7(0),$$
 on écrit que $\sum_{k=0}^7 \binom{8}{k} \mathbf{B}_k(0) = 0$

$$1\binom{8}{0} - \frac{1}{2}\binom{8}{1} + \frac{1}{6}\binom{8}{2} + 0\binom{8}{3} - \frac{1}{30}\binom{8}{4} + 0\binom{8}{5} + \frac{1}{42}\binom{8}{6} + \binom{8}{7}B_7(0) = 0.$$

Et on déduit que $B_7(0) = 0$.

$$-\sum_{k=0}^{\kappa-0} \binom{10}{k} \mathbf{B}_k(0) = 0 \text{ entraine } \mathbf{B}_9(0) = 0.$$

$$-\sum_{k=0}^{10} \binom{11}{k} \mathbf{B}_k(0) = 0 \text{ entraine } \mathbf{B}_{10}(0) = \frac{5}{66}.$$

Les premiers nombres de Bernoulli sont donc :

n	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{B}_n(0)$	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$

Commentaires : On retrouve les nombres de Bernoulli dans les développements limités. En particulier :

$$\frac{x}{e^x-1} \underset{x \to 0}{=} \sum_{k=0}^n \frac{\mathbf{B}_k(0)}{k!} x^k + \mathrm{o}\left(x^n\right)$$

Et on peut en déduire les développements limités des fonctions $\tan \ et \ th$. On démontre que :

$$\tan(x) \underset{x \to 0}{=} \sum_{k=0}^{n} |\mathcal{B}_{2k}(0)| \frac{2^{2k}(2^{2k}-1)}{(2k)!} x^{2k-1} + \mathrm{o}\left(x^{2n}\right)$$

$$\operatorname{th}\left(x\right) \underset{x \to 0}{=} \sum_{k=0}^{n} \mathbf{B}_{2k}(0) \frac{2^{2k}(2^{2k}-1)}{(2k)!} x^{2k-1} + \operatorname{o}\left(x^{2n}\right).$$

Zéta(2m)

II. Calcul des $\zeta(2m)$

1. Pour $n \in \mathbb{N}^{\star}$ et $t \in]0,1[$, montrer que $1+2\sum_{k=1}^{n}\cos(2k\pi t)=\frac{\sin((2n+1)\pi t)}{\sin(\pi t)}.$

Correction : Soient $n \in \mathbb{N}^*$ et $t \in]0,1[$.

$$\begin{split} 1 + 2\sum_{k=1}^{n}\cos(2k\pi t) &= 1 + \sum_{k=1}^{n}\left(e^{2ik\pi t} + e^{-2ik\pi t}\right) \\ &= \sum_{k=-n}^{n}e^{2ik\pi t} \\ &= e^{-2in\pi t}\sum_{k=0}^{2n}e^{2ik\pi t} \\ &= e^{-2in\pi t}\frac{e^{2i(2n+1)\pi t} - 1}{e^{2i\pi t} - 1}\operatorname{car}\,e^{2i\pi t} \neq 1\operatorname{puisque}\,t \in]0,1[\\ &= e^{-2in\pi t}\frac{e^{i(2n+1)\pi t}}{e^{i\pi t}}\frac{e^{i(2n+1)\pi t} - e^{-i(2n+1)\pi t}}{e^{i\pi t} - e^{-i\pi t}} \\ &= \frac{2i\sin((2n+1)\pi t)}{2i\sin(\pi t)} \end{split}$$

$$\forall\,n\in\mathbb{N}^\star,\forall\,t\in]0,1[,\quad 1+2\sum_{k=1}^n\cos(2k\pi t)=\frac{\sin((2n+1)\pi t)}{\sin(\pi t)}.$$

2. Pour $n\geqslant 2,$ on définit l'application $\phi_n:\]0,1[\ \ \longrightarrow\ \ \mathbb{R}$

$$t \quad \longmapsto \quad \frac{\mathbf{B}_n(t) - \mathbf{B}_n(0)}{\sin(\pi t).}$$

(a) Prolonger ϕ_n par continuité sur [0,1].

On en déduit que ϕ_n est prolongeable par continuité en 0, en posant $\phi_n(0) = \frac{B_n'(0)}{\pi}$.

De même, en utilisant le fait que ${\rm B}_n(0)={\rm B}_n(1)$ (car $n\geqslant 2)$:

$$\forall\,t\in]0,1[,\quad\phi_n(t)=\frac{\mathbf{B}_n(t)-\mathbf{B}_n(1)}{\sin(\pi t)}=\frac{\frac{\mathbf{B}_n(t)-\mathbf{B}_n(1)}{t-1}}{\frac{\sin(\pi t)}{t-1}}\xrightarrow[t\to1]{}\frac{\mathbf{B}_n'(1)}{-\pi}.$$

On en déduit que ϕ_n est prolongeable par continuité en 1, en posant $\phi_n(1)=-\frac{B_n'(1)}{\pi}.$

(b) Montrer que le prolongement, encore noté ϕ_n , est de classe \mathscr{C}^1 sur [0,1].

Correction : Tout d'abord, ϕ_n est de classe \mathscr{C}^1 sur]0,1[comme quotient de fonctions de classe \mathscr{C}^1 dont le dénominateur ne s'annule pas.

En 0:

- i. La fonction ϕ_n est continue en 0;
- ii. La fonction ϕ_n est dérivable sur]0,1[et

$$\forall\,t\in]0,1[,\quad\phi_n'(t)=\frac{\mathbf{B}_n'(t)\sin(\pi t)-[\mathbf{B}_n(t)-\mathbf{B}_n(0)]\pi\cos(\pi t)}{\sin^2(\pi t)}$$

iii. La fonction polynomiale B_n étant de classe \mathscr{C}^∞ , d'après le théorème de Taylor-Young elle admet un développement limité d'ordre 2 en 0 donné par :

$$B_n(t) = B_n(0) + B'_n(0)t + \frac{B''_n(0)}{2}t^2 + o(t^2).$$

De même, \mathbf{B}_n' est polynomiale. Elle admet développement limité d'ordre 1 en 0 donné par :

$$B'_n(t) = B'_n(0) + B''_n(0)t + o(t).$$

$$\begin{split} \phi_n'(t) = & \frac{\mathbf{B}_n'(t)\sin(\pi t) - [\mathbf{B}_n(t) - \mathbf{B}_n(0)]\pi\cos(\pi t)}{\sin^2(\pi t)} \\ = & \frac{[\mathbf{B}_n'(0) + \mathbf{B}_n''(0)t + \mathbf{o}\left(t\right)][\pi t + \mathbf{o}\left(t^2\right)] - \pi[\mathbf{B}_n'(0)t + \frac{\mathbf{B}_n''(0)}{2}t^2 + \mathbf{o}\left(t^2\right)][1 + \mathbf{o}\left(t\right)]}{\pi^2 t^2 + \mathbf{o}\left(t^2\right)} \\ = & \frac{\frac{1}{2}\pi\mathbf{B}_n''(0)t^2 + \mathbf{o}\left(t^2\right)}{\pi^2 t^2 + \mathbf{o}\left(t^2\right)} = \frac{\frac{1}{2}\pi\mathbf{B}_n''(0) + \mathbf{o}\left(1\right)}{\pi^2 + \mathbf{o}\left(1\right)} \xrightarrow[t \to 0]{} \frac{\mathbf{B}_n''(0)}{2\pi} \end{split}$$

D'après le théorème prolongement de classe \mathscr{C}^1 , on peut en déduire que la fonction ϕ_n est dérivable en 0, et que $\phi_n'(0)=\frac{B_n''(0)}{2\pi}.$

On a démontré au passage la continuité de ϕ'_n en 0 (puisque $\phi'_n(t)$ admet une limite en 0).

En 1:

- i. La fonction ϕ_n est continue en ${\bf 1}$;
- ii. La fonction ϕ_n est dérivable sur]0,1[et

$$\forall \, t \in]0,1[, \quad \phi_n'(t) = \frac{\mathbf{B}_n'(t) \sin(\pi t) - [\mathbf{B}_n(t) - \mathbf{B}_n(0)] \pi \cos(\pi t)}{\sin^2(\pi t)}$$

iii. La fonction polynomiale B_n étant de classe \mathscr{C}^{∞} , d'après le théorème de Taylor-Young, elle admet un développement limité d'ordre 2 en 1 donné par :

$$\mathbf{B}_n(1+h) = \mathbf{B}_n(1) + \mathbf{B}_n'(1)h + \frac{\mathbf{B}_n''(1)}{2}h^2 + \mathrm{o}\left(h^2\right).$$

De même, \mathbf{B}_n' est polynomiale. Elle admet développement limité d'ordre 1 en 1 donné par :

$$B'_{n}(1+h) = B'_{n}(1) + B''_{n}(1)h + o(h)$$
.

h

$$\begin{split} \phi_n'(1+h) = & \frac{\mathbf{B}_n'(1+h)\sin(\pi(1+h)) - [\mathbf{B}_n(1+h) - \mathbf{B}_n(0)]\pi\cos(\pi(1+h))}{\sin^2(\pi(1+h))} \\ & = \frac{[\mathbf{B}_n'(1) + \mathbf{B}_n''(1)h + \mathbf{o}\,(h)][-\pi h + \mathbf{o}\,(h^2)]}{-\pi[\mathbf{B}_n'(1)h + \frac{\mathbf{B}_n''(1)}{2}h^2 + \mathbf{o}\,(h^2)][-1 + \mathbf{o}\,(h)]} \\ = & \frac{-\frac{1}{2}\pi\mathbf{B}_n''(1)h^2 + \mathbf{o}\,(h^2)}{\pi^2h^2 + \mathbf{o}\,(h^2)} = \frac{-\frac{1}{2}\pi\mathbf{B}_n''(1) + \mathbf{o}\,(1)}{\pi^2 + \mathbf{o}\,(1)} \xrightarrow[h \to 0]{} \frac{\mathbf{B}_n''(1)}{2\pi} \end{split}$$

D'après le théorème de prolongement de classe \mathscr{C}^1 , on peut en déduire que la fonction ϕ_n est dérivable en 1, et que $\phi_n'(1)=-\frac{\mathrm{B}_n''(1)}{2\pi}.$

On a démontré au passage la continuité de ϕ'_n en 1 (puisque $\phi'_n(t)$ admet une limite en 1). Commentaires : Personnellement, j'aurais plutôt invoqué un argument de symétrie ou d'anti-symétrie de centre $\frac{1}{2}$ en montrant que $B_n(t) = (-1)^n B_n(t)$ pour tout $t \in \mathbb{R}$ et $n \geqslant 2$ plutôt que de tout refaire.

Conclusion.

$$\phi_n$$
 est de classe \mathscr{C}^1 sur $[0,1]$.

(c) Pour tout $\lambda \in \mathbb{R}$, justifier l'existence de l'intégrale $\int_0^1 \phi_n(t) \sin(\lambda t) \, \mathrm{d}t$.

$$\text{Montrer que} \lim_{\lambda \to +\infty} \left(\int_0^1 \phi_n(t) \sin(\lambda t) \, \mathrm{d}t \right) = 0.$$

Correction : Soit $\lambda \in \mathbb{R}$.

La fonction $t \longmapsto \phi_n(t)\sin(\lambda t)$ étant continue sur [0,1], elle admet une intégrale sur cet intervalle.

Considérons maintenant $\lambda>0$. Comme les fonctions $t\longmapsto \phi_n(t)$ et $t\longmapsto -\frac{\cos(\lambda t)}{\lambda}$ sont de classe \mathscr{C}^1 sur [0,1], on peut effectuer une intégration par parties :

$$\begin{split} \int_0^1 \phi_n(t) \sin(\lambda t) \, \mathrm{d}t &= \left[-\phi_n(t) \frac{\cos(\lambda t)}{\lambda} \right]_0^1 + \int_0^1 \phi_n'(t) \frac{\cos(\lambda t)}{\lambda} \, \mathrm{d}t \\ &= \frac{1}{\lambda} \left(\phi_n(0) - \phi_n(1) \cos(\lambda) + \int_0^1 \phi_n'(t) \cos(\lambda t) \, \mathrm{d}t \right) \end{split}$$

Montrons que la parenthèse est bornée. Pour cela, remarquons que la fonction ϕ_n est continue sur le segment [0,1]. Elle est donc bornée. Posons $M\in\mathbb{R}_+$ tel que

$$\forall\,x\in[0,1],\quad |\phi_n(t)|\leqslant \mathcal{M}.$$

Même raisonnement pour ϕ_n' , continue sur le segment [0,1]. Posons $\mathbf{M}' \in \mathbb{R}_+$ tel que

$$\forall x \in [0, 1], \quad |\phi'_n(t)| \leqslant M'.$$

On a donc, $\forall x \in [0,1]$,

$$\begin{split} \left|\phi_n(0) - \phi_n(1)\cos(\lambda) + \int_0^1 \phi_n'(t)\cos(\lambda t) \,\mathrm{d}t \right| &\leqslant |\phi_n(0)| + |\phi_n(1)\cos(\lambda)| + \left|\int_0^1 \phi_n'(t)\cos(\lambda t) \,\mathrm{d}t \right| \\ &\leqslant \mathrm{M} + \mathrm{M}|\cos\lambda| + \int_0^1 |\phi_n'(t)\cos(\lambda t)| \,\mathrm{d}t \\ &\leqslant 2\mathrm{M} + \int_0^1 \mathrm{M}' \,\mathrm{d}t \\ &\leqslant 2\mathrm{M} + \mathrm{M}' \end{split}$$

La parenthèse est bien bornée. Et comme $\lim_{\lambda \to +\infty} \frac{1}{\lambda} = 0$, on en déduit que

$$\lim_{\lambda \to +\infty} \left(\int_0^1 \phi_n(t) \sin(\lambda t) \, \mathrm{d}t \right) = 0.$$

Commentaires : Ce théorème, qui s'étend à φ_n simplement continue mais difficile pour vous, porte le nom de théorème de Riemann-Lebesgue.

- 3. Pour $(m,k) \in (\mathbb{N}^{\star})^2$, on note $I_{m,k} = \frac{1}{(2m)!} \int_0^1 B_{2m}(t) \cos(2k\pi t) dt$.
 - (a) Pour $m \ge 2$, trouver une relation entre $I_{m,k}$ et $I_{m-1,k}$.

Correction : Soit $m\geqslant 2$ et $k\in\mathbb{N}^\star$. Les fonctions B_{2m} et $t\longmapsto \frac{\sin(2k\pi t)}{2k\pi}$ étant de classe \mathscr{C}^1 sur [0,1], on peut intégrer par parties :

$$\begin{split} (2m)! \mathbf{I}_{m,k} &= \int_0^1 \mathbf{B}_{2m}(t) \cos(2k\pi t) \, \mathrm{d}t \\ &= \left[\mathbf{B}_{2m}(t) \frac{\sin(2k\pi t)}{2k\pi} \right]_0^1 - \int_0^1 \mathbf{B}_{2m}'(t) \frac{\sin(2k\pi t)}{2k\pi} \, \mathrm{d}t \\ &= -\frac{1}{2k\pi} \int_0^1 \mathbf{B}_{2m}'(t) \sin(2k\pi t) \, \mathrm{d}t \quad \text{le crochet \'etant nul \`a cause des sinus} \\ &= -\frac{1}{2k\pi} \left(\left[-\mathbf{B}_{2m}'(t) \frac{\cos(2k\pi t)}{2k\pi} \right]_0^1 + \int_0^1 \mathbf{B}_{2m}''(t) \frac{\cos(2k\pi t)}{2k\pi} \, \mathrm{d}t \right) \\ &= -\frac{1}{(2k\pi)^2} \left(\mathbf{B}_{2m}'(0) - \mathbf{B}_{2m}'(1) + \int_0^1 \mathbf{B}_{2m}''(t) \cos(2k\pi t) \, \mathrm{d}t \right) \end{split}$$

Or,

— ${\rm B}'_{2m}(0)-{\rm B}'_{2m}(1)=2m\left[{\rm B}_{2m-1}(0)-{\rm B}_{2m-1}(1)\right]=0$ d'après la question (4a) partie I car $2m-1\geqslant 2.$

$$-\!\!\!\!- \mathsf{B}_{2m}'' = (2m)\mathsf{B}_{2m-1}' = (2m)(2m-1)\mathsf{B}_{2m-2} = (2m)(2m-1)\mathsf{B}_{2(m-1)}$$

On en déduit que

$$(2m)! \mathbf{I}_{m,k} = -\frac{(2m)(2m-1)}{(2k\pi)^2} \int_0^1 \mathbf{B}_{2(m-1)}(t) \cos(2k\pi t) \,\mathrm{d}t.$$

Zéta(2m)

Finalement.

$${\rm I}_{m,k} = -\frac{1}{(2k\pi)^2(2m-2)!} \int_0^1 {\rm B}_{2(m-1)}(t) \cos(2k\pi t) \, {\rm d}t.$$

i.e.

$$\forall\, n\geqslant 2, \forall\, k\in\mathbb{N}^\star, \quad \mathrm{I}_{m,k}=-\frac{1}{(2k\pi)^2}\mathrm{I}_{m-1,k}.$$

(b) Calculer $I_{1,k}$.

Correction : Soit $k \in \mathbb{N}^*$.

$$\begin{split} &\mathbf{I}_{1,k} = \frac{1}{2} \int_0^1 \mathbf{B}_2(t) \cos(2k\pi t) \, \mathrm{d}t \\ &= \frac{1}{2} \left(\left[\mathbf{B}_2(t) \frac{\sin(2k\pi t)}{2k\pi} \right]_0^1 - \int_0^1 \mathbf{B}_2'(t) \frac{\sin(2k\pi t)}{2k\pi} \, \mathrm{d}t \right) \\ &= -\frac{1}{2k\pi} \int_0^1 \mathbf{B}_1(t) \sin(2k\pi t) \, \mathrm{d}t \text{ le crochet \'etant nul \`a cause des sinus} \\ &= -\frac{1}{2k\pi} \left(\left[-\mathbf{B}_1(t) \frac{\cos(2k\pi t)}{2k\pi} \right]_0^1 + \int_0^1 \mathbf{B}_1'(t) \frac{\cos(2k\pi t)}{2k\pi} \, \mathrm{d}t \right) \\ &= -\frac{1}{(2k\pi)^2} \left(\mathbf{B}_1(0) - \mathbf{B}_1(1) + \int_0^1 \mathbf{B}_0(t) \cos(2k\pi t) \, \mathrm{d}t \right) \end{split}$$

Cette fois, l'intégrale est nulle car $\mathbf{B}_0=1$ et $\int_0^1\cos(2k\pi t)\,\mathrm{d}t=0.$

Mais ${\bf B}_1(0)-{\bf B}_1(1)=-\frac{1}{2}-\frac{1}{2}=-1.$ Finalement,

$$\forall\,k\in\mathbb{N}^\star,\quad \mathrm{I}_{1,k}=\frac{1}{(2k\pi)^2}.$$

(c) En déduire $I_{m,k}$ pour tout $(m,k) \in (\mathbb{N}^*)^2$.

Correction : Par récurrence immédiate sur m, à k fixé, on obtient :

$$\forall (m,k) \in (\mathbb{N}^{\star})^2, \quad I_{m,k} = \frac{(-1)^{m-1}}{(2k\pi)^{2m}}$$

4. Pour $(m,n) \in (\mathbb{N}^{\star})^2$, exprimer l'intégrale $\int_0^1 \phi_{2m}(t) \sin((2n+1)\pi t) dt$ en fonction de $\mathbf{B}_{2m}(0)$ et des $\mathbf{I}_{m,k}$ pour $k \in [\![1,n]\!]$.

Correction: Soit $(m,n) \in (\mathbb{N}^*)^2$.

$$\begin{split} \int_0^1 \phi_{2m}(t) \sin((2n+1)\pi t) \, \mathrm{d}t &= \int_0^1 \frac{\mathrm{B}_{2m}(t) - \mathrm{B}_{2m}(0)}{\sin(\pi t)} \sin((2n+1)\pi t) \, \mathrm{d}t \\ &= \int_0^1 \left(\mathrm{B}_{2m}(t) - \mathrm{B}_{2m}(0)\right) \left(1 + 2\sum_{k=1}^n \cos(2k\pi t)\right) \, \mathrm{d}t \, \, \mathrm{d}' \mathrm{après} \, \mathrm{II}.1 \\ &= \int_0^1 \mathrm{B}_{2m}(t) \left(1 + 2\sum_{k=1}^n \cos(2k\pi t)\right) \, \mathrm{d}t \\ &\quad - \mathrm{B}_{2m}(0) \int_0^1 \left(1 + 2\sum_{k=1}^n \cos(2k\pi t)\right) \, \mathrm{d}t \\ &= \underbrace{\int_0^1 \mathrm{B}_{2m}(t) \, \mathrm{d}t}_{=0} + 2\sum_{k=1}^n \underbrace{\int_0^1 \mathrm{B}_{2m}(t) \cos(2k\pi t) \, \mathrm{d}t}_{=(2m)!\mathrm{I}_{m,k}} - 2\mathrm{B}_{2m}(0) \sum_{k=1}^n \underbrace{\int_0^1 \cos(2k\pi t) \, \mathrm{d}t}_{=0} \\ &= -\mathrm{B}_{2m}(0) + 2(2m)! \sum_{k=1}^n \mathrm{I}_{m,k}. \end{split}$$

Donc

$$\forall \, (m,n) \in \left(\mathbb{N}^{\star}\right)^{2}, \quad \int_{0}^{1} \phi_{2m}(t) \sin((2n+1)\pi t) \, \mathrm{d}t = -\mathrm{B}_{2m}(0) + 2(2m)! \sum_{k=1}^{n} \mathrm{I}_{m,k}.$$

5. On fixe $m \in \mathbb{N}^*$. Montrer que la suite $(S_n)_{n\geqslant 1}$ donnée par $S_n = \sum_{k=1}^n \frac{1}{k^{2m}}$ converge. On note $\zeta(2m)$ sa limite.

Prouver que $\zeta(2m) = (-1)^{m-1} \frac{2^{2m-1}}{(2m)!} \mathbf{B}_{2m}(0) \pi^{2m}.$

Correction : On fixe $m \in \mathbb{N}^*$.

En utilisant l'expression de ${\rm I}_{m,k}$, on obtient :

$$\begin{split} \int_0^1 \phi_{2m}(t) \sin((2n+1)\pi t) \, \mathrm{d}t &= -\mathrm{B}_{2m}(0) + 2(2m)! \sum_{k=1}^n \frac{(-1)^{m-1}}{(2k\pi)^{2m}} \\ &= -\mathrm{B}_{2m}(0) + \frac{(-1)^{m-1}(2m)!}{2^{2m-1}\pi^{2m}} \sum_{k=1}^n \frac{1}{k^{2m}} \end{split}$$

D'où,

Lycée Jules Garnier

$$\sum_{k=1}^{n} \frac{1}{k^{2m}} = \frac{(-1)^{m-1} 2^{2m-1} \pi^{2m}}{(2m)!} \left(B_{2m}(0) + \int_{0}^{1} \phi_{2m}(t) \sin((2n+1)\pi t) dt \right).$$

Or, on a vu que $\lim_{\lambda \to +\infty} \left(\int_0^1 \phi_{2m}(t) \sin(\lambda t) \, \mathrm{d}t \right) = 0.$

Donc
$$\lim_{n\to +\infty} \left(\int_0^1 \phi_{2m}(t) \sin((2n+1)\pi t) \,\mathrm{d}t \right) = 0.$$

On en déduit que la suite $(S_n)_{n\geqslant 1}$ donnée par $S_n=\sum_{k=1}^n\frac{1}{k^{2m}}$ converge et que sa limite, notée $\zeta(2m)$ vaut :

$$\zeta(2m) = \sum_{k=1}^{+\infty} \frac{1}{k^{2m}} = (-1)^{m-1} \frac{2^{2m-1}}{(2m)!} \mathbf{B}_{2m}(0) \pi^{2m}.$$

6. Calculer $\zeta(2)$, $\zeta(4)$, $\zeta(6)$, $\zeta(8)$ et $\zeta(10)$.

Correction:
$$\zeta(2) = \frac{(-1)^0 2^{2-1} \pi^2}{(2)!} B_2(0) = \frac{\pi^2}{6}$$

$$\zeta(4) = \frac{(-1)^1 2^3 \pi^4}{4!} \mathbf{B}_4(0) = \frac{-\pi^4}{3} \times \frac{-1}{30} = \frac{\pi^4}{90}$$

$$\zeta(6) = \frac{(-1)^2 2^5 \pi^6}{6!} B_6(0) = \frac{2\pi^6}{45} \times \frac{1}{42} = \frac{\pi^6}{945}$$

$$\zeta(8) = \frac{(-1)^3 2^7 \pi^8}{8!} B_8(0) = \frac{-\pi^8}{315} \times \frac{-1}{30} = \frac{\pi^8}{9450}$$

$$\zeta(6) = \frac{(-1)^4 2^9 \pi^{10}}{10!} B_{10}(0) = \frac{2\pi^{10}}{14175} \times \frac{5}{66} = \frac{\pi^{10}}{93555}$$

Les premières valeurs des $\zeta(2m)$ sont donc :

2m	2	4	6	8	10
$\zeta(2m)$	$\frac{\pi^2}{6}$	$\frac{\pi^4}{90}$	$\frac{\pi^6}{945}$	$\frac{\pi^8}{9450}$	$\frac{\pi^{10}}{93555}$

 $\text{Commentaires}: \ \textit{Grâce à la relation} \ \forall \ n \geqslant 2, \quad \sum_{k=0}^{n-1} \binom{n}{k} \mathbf{B}_k(0) = 0, \ \textit{on peut prouver facilement que les nombres de Bernoulli sont tous rationnels. De ce fait, } \frac{\zeta(2m)}{\pi^{2m}} \ \text{est toujours rationnel}.$

On ne sait quasiment rien des $\zeta(2m+1)$ pour $m\geqslant 1$. Roger Apéry a démontré en **1979** que $\zeta(3)\notin\mathbb{Q}$.