Endomorphisme remarquable

Nom :		Prenom:
1. On donne	$\begin{array}{cccc} f: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & (x;y;z) & \longmapsto & (3x-2) \end{array}$	2y - 2z; 2x - y - 2z; 2x - 2y - z).
Caractériser gé	cométriquement f . (On ne den	nande pas les espaces caractéristiques)
-		$\big\{(x;y;z)\in\mathbb{R}^3\mid x-z=0\ \ \text{et}\ \ x-y=0\big\}.$ on précisera la dimension et une base que l'on notera

3.	Soit $u\left(x;y;z\right)\in\mathbb{R}^{3}.$ Exprimer u en fonction de e_{1},e_{2} et $e_{3}.$
4.	En déduire que $\mathbb{R}^3 = \mathcal{F} \oplus \mathcal{G}$ et préciser une base autre que la base canonique.
5.	(a) Rappeler l'expression de la symétrie de base E_1 parallèlement à E_2 lorsque $E=E_1\oplus E_2.$

2

(b) On considère f dans \mathbb{R}^3 , la symétrie de base F parallèlement G.			
Donner $f(e_1)$, $f(e_2)$ et $f(e_3)$.			
(c) Compléter :			
$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \\ (x;y;z) \longmapsto (\cdots;\cdots;\cdots) \; .$			
$(x;y;z) \longmapsto (\cdots;\cdots;\cdots).$			