Séries

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle quelconque.

Soit $S_n = \sum_{k=0}^n u_k$ la somme partielle de la série $\sum u_n$.

1. Justifier que, si $k\geqslant 1,$ on a $u_k=\mathbf{S}_k-\mathbf{S}_{k-1},$ et montrer que :

$$\sum_{k=1}^{n} \frac{u_k}{k} = \sum_{k=1}^{n} \frac{\mathbf{S}_k}{k(k+1)} + \frac{\mathbf{S}_n}{n+1} - \mathbf{S}_0.$$

- 2. En déduire que, si la suite $(S_n)_{n\in\mathbb{N}}$ est bornée, alors la série $\sum \frac{u_n}{n}$ converge.
- 3. Trouver un contre-exemple à la réciproque de ce résultat (on cherchera dans les exemples classiques du cours une suite $(u_n)_{n\in\mathbb{N}}$ telle que $(\mathbf{S}_n)_{n\in\mathbb{N}}$ n'est pas bornée, mais $\sum \frac{u_n}{n}$ converge tout de même).
- 4. Quelques applications:
 - (a) Déterminer la nature de la série $\sum \frac{(-1)^n}{n}$ (on ne demande pas la somme).
 - (b) Soit $\theta \in \mathbb{R}$, simplifier la somme $S_n(\theta) = \sum_{k=0}^n \cos(k\theta)$.
 - (c) En déduire la convergence des séries $\sum \frac{\cos(n)}{n}$ et $\sum \frac{\cos(2n)}{n}$.
 - (d) Quelle est la nature de la série $\sum \frac{\sin^2(n)}{n}$?
 - (e) Montrer que $|\cos(k)|\geqslant \frac{1+\cos(2k)}{2}$, et déterminer la nature de $\sum \frac{|\cos(n)|}{n}$.