

Matrices et applications linéaires

La Matrice est universelle. Elle est omniprésente.

Elle est avec nous ici, en ce moment même. Tu la vois chaque fois que tu regardes par la fenêtre, ou lorsque tu allumes la télévision.

Morpheus

Il est temps pour cet avant-dernier chapitre d'algèbre linéaire de l'année de faire le lien entre les espaces vectoriels et le calcul matriciel, qui constitue un puissant outil d'étude, notamment pour les applications linéaires.

A tel point d'ailleurs qu'une grande partie de votre programme d'algèbre de deuxième année sera consacrée à la diagonalisation de matrices et à ses applications. Pour cette année, nous nous contenterons de constater qu'une application linéaire entre espaces de dimension finie peut être représentée par une matrice, et que le calcul matriciel (puissances de matrices notamment) s'interprète simplement dans ce cadre.

De la polication linéaire de \mathbb{R}^n dans \mathbb{R}^p étant caractérisée par les images des vecteurs de la base canonique de \mathbb{R}^n , ou encore par les coordonnées de ces images dans la base canonique de \mathbb{R}^p , on peut tout savoir d'une application linéaire en connaissant simplement n fois p coordonnées.

C'est ce qui va permettre de créer un lien entre applications linéaires et matrices, et de justifier l'introduction du calcul matriciel effectuée dans un précédent chapitre, toutes les opérations sur les matrices s'interprétant naturellement en termes d'applications linéaires. Tout sera dit au théorème (2).

CONTENU

I Représentations matricielles	. 2
I.1 Matrice d'un vecteur	. 2
I.2 Matrice d'une famille de vecteurs	. 3
I.3 Matrice d'une application linéaire	. 4
I.4 Isomorphisme structurel	. 7
II Matrice(S) d'une application linéaire	. 9
II.1 Image d'un vecteur	. 9
II.2 Matrice d'une composée d'applications linéaires	
II.3 Matrice de la réciproque d'un isomorphisme	. 13
III Changement de bases	. 15
III.1 Matrice de passage	. 15
III.2 Formules de changement de bases	. 17
IV Noyau, image et rang d'une matrice	. 20
IV.1 Application linéaire canoniquement associée à une matrice	. 20
IV.2 Noyau, image et rang d'une matrice	. 20
IV.3 Caractérisation des matrices inversibles	. 24
IV.4 Invariance du rang	. 24

Dans tout le chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} et \mathcal{E} un \mathbb{K} -espace vectoriel de dimension finie.

Représentations matricielles _____

I.1 Matrice d'un vecteur

Définition 1 : Soient E et un K-ev $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E.

Soit $x = x_1 e_1 + ... + x_n e_n \in \mathcal{E}$, un vecteur de \mathcal{E} .

On appelle matrice de x dans la base \mathcal{B} , notée $\mathrm{Mat}_{\mathcal{B}}(x)$, la matrice colonne de $\mathscr{M}_{n,1}(\mathbb{K})$ constituée des coordonnées de x dans la base \mathcal{B} :

$$\operatorname{Mat}_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{B}}.$$

Les matrices dépendent de la base \mathcal{B} choisie.

En pratique, on identifiera souvent une matrice colonne $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \pi \end{pmatrix} \in \mathscr{M}_{n,1}(\mathbb{K}) \text{ au } n\text{-uplet } (x_1,\dots,x_n) \text{ de ses } x_n \in \mathscr{M}_{n,1}(\mathbb{K})$

éléments dans \mathbb{K}^n .

Exemple 1 : Dans l'espace des vecteurs $\vec{\mathcal{E}}_3$ muni d'une base $\mathcal{B}=(\vec{i},\vec{j},\vec{k}),$ si on considère $\vec{u}=3\vec{i}+2\vec{j}-\vec{k},$

$$\operatorname{Mat}_{\mathcal{B}}(\vec{u}) = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}.$$

D'une manière générale, dans \mathbb{R}^3 muni de sa base canonique $\mathcal{B}=(e_1,e_2,e_3),$ pour tout vecteur $u\left(x\,;y\,;z
ight)\in\mathbb{R}^{3},\,\mathrm{on\,\,a\,\,Mat}_{\mathcal{B}}(u)=\left(egin{array}{c}x\\y\\\end{array}
ight).$

Proposition 1:

Soient E un K-espace vectoriel de dimension finie n et \mathcal{B} une base de E.

Alors, l'application:

$$\begin{split} \Phi_{\mathcal{B}}: \ & \to \ \mathcal{M}_{n,1}(\mathbb{K}) \simeq \mathbb{K}^n \\ x & \longmapsto \ \operatorname{Mat}_{\mathcal{B}}(x) \end{split}$$

est un isomorphisme de K-espace vectoriel.

Preuve : Notons $\mathcal{B}=(e_1,\ldots,e_n)$ une base de $\mathbf{E}.$

L'application $\Phi_{\mathcal{B}}$ est linéaire car les applications coordonnées dans une base le sont. Elle est de plus

bijective car la donnée d'un vecteur colonne $\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{B}}$ détermine un et un seul vecteur de \mathbf{E} , à savoir

 $le vecteur x = x_1e_1 + ... + x_ne_n.$

Remarque : En reconnaissant $\phi_{\mathcal{B}}^{-1}$ du chapitre précédent, la démonstration était, bien sûr, inutile.

De même, entre espaces de même dimension finie, la surjectivité ou l'injectivité seule suffisait à prouver la bijectivité.

Exercice 1 : Dans $\mathbb{R}_5[X]$ muni de sa base canonique $(1, X, ..., X^5)$, déterminer $\mathrm{Mat}_{\mathcal{B}}\Big((X+1)^5\Big)$.

Même question dans la base de Taylor centrée en -1 : $(1, X+1, (X+1)^2, \dots, (X+1)^5)$.

I.2 Matrice d'une famille de vecteurs

Définition 2 : Soient E et un $\mathbb{K}\text{-ev }\mathcal{B}=(e_1,e_2,\dots,e_n)$ une base de E.

Soit $\mathcal{F}=(u_1,\dots,u_p)\in \mathcal{E}^p$ une famille de vecteurs de E.

On appelle matrice de la famille (u_1,\dots,u_p) dans la base $\mathcal{B},$ notée $\mathrm{Mat}_{\mathcal{B}}(\mathcal{F})=\mathrm{Mat}_{\mathcal{B}}(u_1,\dots,u_p),$ la matrice de $\mathscr{M}_{n,p}(\mathbb{K})$ dont la $j^{\mathrm{\`e}me}$ colonne est $\mathrm{Mat}_{\mathcal{B}}(u_j)$:

$$\mathrm{Mat}_{\mathcal{B}}(u_1,u_2,\dots,u_p) = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix} \iff \forall \, j \in [\![1,p]\!], \,\, u_j = a_{1,j}e_1 + \cdots + a_{n,j}e_n.$$

Exemples 2:

— Dans le plan vectoriel $\vec{\mathcal{E}}_2$ muni d'une base $\mathcal{B} = (\vec{i}, \vec{j})$, si on considère $\vec{u} = 2\vec{i} + \vec{j}$, $\vec{v} = 3\vec{i} - \vec{j}$ et $\vec{w} = 4\vec{i}$ alors :

 $\operatorname{Mat}_{\mathcal{B}}(\vec{u}, \vec{v}, \vec{w}) = \begin{pmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \end{pmatrix} \mathbf{i}$

— Dans $\vec{\mathcal{E}}_3$ muni de sa base canonique $\mathcal{B},$ si on considère $\vec{u}=(1\,;2\,;3)$ et $\vec{v}=(2\,;0\,;1)$ alors :

$$\operatorname{Mat}_{\mathcal{B}}(\vec{u},\vec{v}) = \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}.$$

— Si $\mathcal{B}=(e_1,\ldots,e_n)$ est une base de E alors $\mathcal{B}=\mathrm{Mat}_{\mathcal{B}}(\mathcal{B})=\mathrm{I}_n$.

Exercice 2: Écrire la matrice des polynômes $P_i(X) = (X+a)^i$ pour tout $0 \le i \le n$ dans la base canonique $(1, X, ..., X^n)$ de $\mathbb{K}_n[X]$ puis dans celle de Taylor centrée en -a.

I.3 Matrice d'une application linéaire

Définition 3 : Soient deux K-espaces vectoriels :

- E de dimension p muni d'une base $\mathcal{B} = (e_1, e_2, \dots, e_p)$.
- F de dimension n muni d'une base $\mathcal{B}' = (f_1, f_2, \dots, f_n)$.

Soit $u \in \mathcal{L}(E; F)$.

On appelle matrice de l'application linéaire u dans les bases \mathcal{B} et \mathcal{B}' , notée $\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(u)$, la matrice de la famille $(u(e_1), u(e_2), \dots, u(e_p))$ dans la base \mathcal{B}' .

$$\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(u) = \mathrm{Mat}_{\mathcal{B}'}\big(u(e_1), u(e_2), \dots, u(e_p)\big) = \begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,p} \\ m_{2,1} & m_{2,2} & \cdots & m_{2,p} \\ \vdots & \vdots & & \vdots \\ m_{n,1} & m_{n,2} & \cdots & m_{n,p} \end{pmatrix}_{\mathcal{B},\mathcal{B}'} \in \mathcal{M}_{n,p}(\mathbb{K}).$$

$$\forall \, j \in [\![1,p]\!], \quad u(e_j) = m_{1,j} f_1 + m_{2,j} f_2 + \dots + m_{n,j} f_n.$$

Commentaires:

— Comprenez bien que pour remplir la matrice, on a calculé les images $u(e_1)$, $u(e_2)$, ..., $u(e_n)$ des éléments de la base \mathcal{B} de E et que l'on a décomposé chacune d'elle dans la base \mathcal{B}' de F (disposé en colonne dans la matrice).

- dim (E) = nombre de colonnes de la matrice, dim (F) = nombre de lignes de la matrice.
- Si u est un endomorphisme de E, on note $\operatorname{Mat}_{\mathcal{B}}(u)$ au lieu de $\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(u)$. C'est une matrice carrée.
- Si u est une forme linéaire (F = \mathbb{K}), on a n=1. La matrice de u est une matrice ligne, élément de $\mathcal{M}_{1,p}(\mathbb{K}).$

Exemple 3 : Écrire « Soit f l'endomorphisme de $\mathbb{R}_2[X]$ de matrice $\begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & 4 \\ 0 & 4 & 5 \end{pmatrix}$ dans la base canonique » signifie alors que : f(1) = 3X + 1, $f(X) = 4X^2 + X$ et $f(X^2) = 5X^2 + 4X + 2$.

ATTENTION Dans la base canonique de $\mathbb{R}_2[X]$, les coordonnées de $aX^2 + bX + c$ sont (c; b; a)!

Exercice 3: Pour $A = \begin{pmatrix} 2 & 0 & 1 \\ 4 & -1 & 3 \end{pmatrix}$ et $f_A : \mathbb{R}^3 \longmapsto \mathbb{R}^2$, donner sans calcul, $f_A(1,0,0), f_A(0,1,0)$ et $f_A(0,0,1)$ et calculer $f_A(1,2,3)$ et $f_A(-1,3,2)$ en utilisant les colonnes de A.

Exemple 4 : Pour tout \mathbb{K} -ev \mathcal{E} de dimension finie n et pour toute base \mathcal{B} de \mathcal{E} , $\mathrm{Mat}_{\mathcal{B}}(\mathrm{I}d_{\mathcal{E}})=\mathrm{I}_n$.

Exemple 5 (Forme linéaire) : Soient $\varphi \in \mathcal{L}(E; \mathbb{K})$ une forme linéaire et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

On prend $(1_{\mathbb{K}})$ pour base de \mathbb{K} .

En notant, $\forall j \in [[1; n]], a_j = \varphi(e_j)$, on a :

$$\operatorname{Mat}_{\mathcal{B}}(\varphi) = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \in \mathcal{M}_{1,n}(\mathbb{K}).$$

Exemple 6:

1. Soit $u: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ où $\begin{cases} \mathcal{B} = (e_1, e_2) \\ \mathcal{B}' = (f_1, f_2, f_3) \end{cases}$ sont les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

On a:

$$\bullet \ u(e_1) = u\left(\begin{pmatrix}1\\0\end{pmatrix}_{\mathcal{B}}\right) = \begin{pmatrix}1\\2\\0\end{pmatrix}_{\mathcal{B}'} = 1f_1 + 2f_2 + 0f_3$$

$$\bullet \ u(e_2) = u\left(\begin{pmatrix}0\\1\end{pmatrix}_{\mathcal{B}}\right) = \begin{pmatrix}1\\-1\\3\end{pmatrix}_{\mathcal{B}'} = 1f_1 - 1f_2 + 3f_3$$

$$\Longrightarrow \ \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u) = \begin{pmatrix}1\\1\\0&3\end{pmatrix}_{\mathcal{B},\mathcal{B}'}.$$

$$2. \text{ Soit } \mathcal{C} = \left(e_1' = \begin{pmatrix} 1 \\ 2 \end{pmatrix}_{\mathcal{B}} = e_1 + 2e_2 \, ; e_2' = \begin{pmatrix} -1 \\ 1 \end{pmatrix}_{\mathcal{B}} = -e_1 + e_2 \right).$$

Alors:

$$\bullet \ u(e_1') = u\left(\begin{pmatrix}1\\2\end{pmatrix}\right) = \begin{pmatrix}3\\0\\6\end{pmatrix}_{\mathcal{B}'}$$

$$\bullet \ u(e_2') = u\left(\begin{pmatrix}-1\\1\end{pmatrix}\right) = \begin{pmatrix}0\\-3\\3\end{pmatrix}_{\mathcal{B}'}$$

$$\Longrightarrow \operatorname{Mat}_{\mathcal{C},\mathcal{B}'}(u) = \begin{pmatrix}3&0\\0&-3\\6&3\end{pmatrix}_{\mathcal{C},\mathcal{B}'}.$$

3. Soit $C' = (f'_1 = f_1 + f_2; f'_2 = f_2 - f_3; f'_3 = f_3).$

Alors:

$$\bullet \ u(e_1) = 1f_1 + 2f_2 + 0f_3 \qquad = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}_{\mathcal{B}'}$$

$$= f_1 + f_2 + f_2 - f_3 + f_3$$

$$= f_1' + f_2' + f_3' \qquad = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}_{\mathcal{C}'}$$

$$\bullet \ u(e_2) = 1f_1 - 1f_2 + 3f_3 \qquad = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}_{\mathcal{B}'}$$

$$= f_1' - 2f_2' + f_3' \qquad = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}_{\mathcal{C}'}$$

4. Enfin,

$$\bullet \ u(e_1') = 3f_1 + 6f_3 \qquad = \begin{pmatrix} 3 \\ 0 \\ 6 \end{pmatrix}_{\mathcal{B}'} \\ = 3f_1' - 3f_2' + 3f_3' \qquad = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}_{\mathcal{C}'} \\ \bullet \ u(e_2') = -3f_2 + 3f_3 \qquad = \begin{pmatrix} 0 \\ -3 \\ 3 \end{pmatrix}_{\mathcal{B}'} \\ = -3f_2' \qquad = \begin{pmatrix} 0 \\ -3 \\ 0 \end{pmatrix}_{\mathcal{C}'}$$

La matrice d'une application linéaire dépend des bases choisies au départ ET à l'arrivée!

Exercice 4 : On définit l'application $u: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $(x,y,z) \longmapsto (x+y+z,x-y)$.

On note $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $\mathcal{C}=(f_1,f_2)$ la base canonique de \mathbb{R}^2 .

- 1. Déterminer $Mat_{\mathcal{C},\mathcal{B}}(u)$.
- 2. On considère $e'_1 = (1,0,0), e'_2 = (1,1,0)$ et $e'_3 = (1,1,1)$.

Justifier que $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est également une base de \mathbb{R}^3 , et déterminer $\mathrm{Mat}_{\mathcal{C}, \mathcal{B}'}(u)$.

3. On pose $C' = (f'_1, f'_2)$ avec $f'_1 = (1, 1)$ et $f'_2 = (1, -1)$.

En admettant que \mathcal{C}' est une base de \mathbb{R}^2 , déterminer $\operatorname{Mat}_{\mathcal{C}',\mathcal{B}}(u)$.

Expliquer pourquoi les calculs sont plus compliqués quand on choisit une autre base que la base canonique de \mathbb{R}^2 .

Exemple 7 (Projecteur et symétrie) : Soient F et G deux sous-espaces supplémentaires de E, $\mathcal{B}_{\mathrm{F}}=(e_1,\ldots,e_r),\,\mathcal{B}_{\mathrm{G}}=(e_{r+1},\ldots,e_n)$ des bases respectives de F et G.

Notons $\mathcal{B}=(\mathcal{B}_{\mathrm{F}}\,;\mathcal{B}_{\mathrm{G}})$ une base de E adaptée à E = F \oplus G.

ullet Soit p le projecteur sur F parallèlement à G. Alors :

$$\operatorname{Mat}_{\mathcal{B}}(p) = \begin{pmatrix} \operatorname{I}_r & \operatorname{0}_{r,n-r} \\ \operatorname{0}_{n-r,r} & \operatorname{0}_{n-r,n-r} \end{pmatrix}.$$

• Soit s la symétrie par rapport à F parallèlement à G. Alors :

$$\operatorname{Mat}_{\mathcal{B}}(s) = \begin{pmatrix} \operatorname{I}_r & \operatorname{0}_{r,n-r} \\ \operatorname{0}_{n-r,r} & -\operatorname{I}_{n-r} \end{pmatrix}.$$

Remarque : Dans la base $\mathcal{B}'=(\mathcal{B}_G\,;\mathcal{B}_F)$ ces endomorphismes ont pour matrices :

$$\operatorname{Mat}_{\mathcal{B}'}(p) = \begin{pmatrix} 0_{n-r,n-r} & 0_{n-r,r} \\ 0_{r,n-r} & \operatorname{I}_r \end{pmatrix} \quad \text{ et } \quad \operatorname{Mat}_{\mathcal{B}'}(s) = \begin{pmatrix} -\operatorname{I}_{n-r} & 0_{n-r,r} \\ 0_{r,n-r} & \operatorname{I}_r \end{pmatrix}.$$

I.4 Isomorphisme structurel

Théorème 2:

Soient

- E un \mathbb{K} -ev de dimension p muni d'une base \mathcal{B} ;
- F un \mathbb{K} -ev de dimension n muni d'une base \mathcal{B}' .

Alors l'application $\Phi_{\mathcal{B},\mathcal{B}'}: \mathcal{L}(E,F) \longrightarrow \mathcal{M}_{n,p}(\mathbb{K})$ est un isomorphisme.

$$u \longmapsto \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u)$$

 $\textbf{Preuve}: \text{ Notons } \mathcal{B}=(e_1,e_2,\ldots,e_p) \text{ et } \mathcal{B}'=(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n) \text{ des bases respectives de } E \text{ et } F.$

$$- \mbox{ Soit A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix} \in \mathscr{M}_{n,p}(\mathbb{K}).$$

 $\forall j \in [\![1\,;p]\!], \text{ posons } f_j = a_{1,j}\varepsilon_1 + a_{2,j}\varepsilon_2 + \dots + a_{n,j}\varepsilon_n \in \mathcal{F}.$

D'après le chapitre précédent, on sait qu'il existe une unique application $u \in \mathcal{L}(E;F)$ telle que, $\forall j \in [1; p], \ u(e_i) = f_i.$

Par construction, $\Phi(u) = A$ et Φ est bijective.

Reste à montrer que $\Phi_{\mathcal{B},\mathcal{B}'}$ est linéaire.

Soient $\lambda \in \mathbb{K}$ et $\forall u, v \in \mathcal{L}(E, F)$.

 $\Phi_{\mathcal{B},\mathcal{B}'}(\lambda u + v)$ est une matrice dont la $j^{\text{ème}}$ colonne est définie par les coordonnées de $(\lambda u + v)(e_i)$ dans la base \mathcal{B}' .

Or, $(\lambda u + v)(e_i) = \lambda u(e_i) + \mu v(e_i)$.

Donc, $\Phi_{\mathcal{B},\mathcal{B}'}(\lambda u + v) = \lambda \Phi(u) + \Phi(v)$ et $\Phi_{\mathcal{B},\mathcal{B}'} \in \mathscr{L}\Big(\mathscr{L}(\mathsf{E},\mathsf{F})\,;\mathscr{M}_{n,p}(\mathbb{K})\Big).$

En conclusion $\mathscr{L}(E,F) \simeq \mathscr{M}_{n,p}(\mathbb{K})$.

En particulier, la linéarité de $\Phi_{\mathcal{B},\mathcal{B}'}$ s'écrit notamment sous la forme :

$$\forall \: \lambda \in \mathbb{K}, \: \forall \: u, \: v \in \mathscr{L}\left(\mathcal{E}\,; \mathcal{F}\right), \: \mathrm{Mat}_{\mathcal{B}, \mathcal{B}'}(\lambda u + v) = \lambda \mathrm{Mat}_{\mathcal{B}, \mathcal{B}'}(u) + \mathrm{Mat}_{\mathcal{B}, \mathcal{B}'}(v).$$

À retenir 1:

Ce théorème signifie que :

Unicité de la matrice associée :

$$\forall f \in \mathcal{L}(E; F), \exists ! A \in \mathcal{M}_{n,n}(\mathbb{K}) \text{ tel que } A = \text{Mat}_{\mathcal{B}, \mathcal{B}'}(f).$$

Unicité de l'application linéaire associée :

$$\forall\, \mathbf{A} \in \mathscr{M}_{n,p}(\mathbb{K}), \,\, \exists\, !f \in \mathscr{L}\left(\mathbf{E}\, ; \mathbf{F}\right) \,\, \, \mathrm{tel \,\, que \,\, } \mathbf{A} = \mathrm{Mat}_{\mathscr{B},\mathscr{B}'}(f).$$

On pourra ainsi (souvent) raisonner indifféremment sur les matrices ou sur les applications linéaires.

Cette isomorphisme est non canonique *i.e.* il dépend des bases \mathcal{B} et \mathcal{B}' choisies.

L'isomorphisme de $\Phi_{\mathcal{B}|\mathcal{B}'}$ nous permet de redémontrer un résultat connu :

Corollaire 2.1:

Lycée Jules Garnier

Si E et F sont deux K-ev de dimension finie alors $\mathcal{L}(E;F)$ aussi et on a :

$$\dim (\mathcal{L}(E; F)) = \dim (E) \times \dim (F).$$

II/ Matrice(S) d'une application linéaire ___

II.1 Image d'un vecteur par une application linéaire

Exercice 5 (Introduction): Soit $u \in \mathcal{L}(E,F)$ tel que $\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(u) = \begin{pmatrix} 1 & 3 \\ 1 & 1 \\ -1 & 2 \end{pmatrix}$ où $\mathcal{B} = (e_1,e_2)$ et

 $\mathcal{B}'=(f_1,f_2,f_3)$ sont respectivement des bases de E et F.

Soit $x = 10e_1 - 7e_2$. Déterminer u(x).

Correction : Par linéarité de u, on a :

$$u(x) = u(10e_1 - 7e_2) = 10u(e_1) - 7u(e_2) = 10 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} - 7 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \times 1 - 7 \times 3 \\ 10 \times 1 - 7 \times 1 \\ 10 \times (-1) - 7 \times 2 \end{pmatrix} = \begin{pmatrix} -11 \\ 3 \\ -24 \end{pmatrix}.$$

En posant
$$X = \begin{pmatrix} 10 \\ -7 \end{pmatrix}$$
, on reconnait le produit matriciel $AX = \begin{pmatrix} 1 & 3 \\ 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 10 \\ -7 \end{pmatrix} = \begin{pmatrix} -11 \\ 3 \\ -24 \end{pmatrix}$.

Théorème 3:

Soient E et F deux K-espaces vectoriels de dimension finie respectivement rapportés aux bases \mathcal{B} et \mathcal{B}' et $u \in \mathcal{L}(\mathcal{E};\mathcal{F})$.

Alors:

$$\begin{array}{rclcl} \operatorname{Mat}_{\mathcal{B}'} \Bigl(u(x) \Bigr) & = & \operatorname{Mat}_{\mathcal{B}, \mathcal{B}'} (u) & \times & \operatorname{Mat}_{\mathcal{B}} (x) \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

Où
$$Y = \operatorname{Mat}_{\mathcal{B}'} (u(x)), \quad A = \operatorname{Mat}_{\mathcal{B}, \mathcal{B}'} (u) \quad \text{et} \quad X = \operatorname{Mat}_{\mathcal{B}} (x).$$

La relation Y = AX est une généralisation de la fonction linéaire y = ax en dimension 1.

Preuve : Soient $\mathcal{B}=(e_1,e_2,\ldots,e_p)$ et $\mathcal{B}'=(f_1,f_2,\ldots,f_n).$

On considère $u: \ \mathbf{E}, \, \mathcal{B}, p \longrightarrow \mathbf{F}, \, \mathcal{B}', n$ où on pose $\mathbf{A} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,p} \\ a_{2,1} & \cdots & a_{2,j} & \cdots & a_{2,p} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,p} \end{pmatrix} = \mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(u)$

$$\text{ et } \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \mathrm{Mat}_{\mathcal{B}}(x) \text{ i.e. } x = \sum_{j=1}^p x_j e_j.$$

On a:

$$u(x) = u\left(\sum_{j=1}^p x_j e_j\right) = \sum_{j=1}^p x_j u(e_j) = \sum_{j=1}^p x_j \left(\sum_{i=1}^n a_{i,j} f_i\right) = \sum_{i=1}^n \underbrace{\left(\sum_{j=1}^p a_{i,j} x_j\right)}_{(\mathrm{AX})_i} f_i.$$

Les coordonnées de u(x) sur la base \mathcal{B}' sont donc

$$\left(\sum_{j=1}^p a_{1,j}x_j,\sum_{j=1}^p a_{2,j}x_j,\cdots,\sum_{j=1}^p a_{n,j}x_j\right) = \Big((\mathbf{A}\mathbf{X})_1,(\mathbf{A}\mathbf{X})_2,,\cdots,(\mathbf{A}\mathbf{X})_n\Big).$$

$$\mathsf{D'où} \ \mathsf{Mat}_{\mathcal{B'}}(u(x)) = \begin{pmatrix} \sum_{j=1}^p a_{1,j} x_j \\ \sum_{j=1}^p a_{2,j} x_j \\ \vdots \\ \sum_{j=1}^p a_{n,j} x_j \end{pmatrix} = \begin{pmatrix} (\mathsf{AX})_1 \\ (\mathsf{AX})_2 \\ \vdots \\ (\mathsf{AX})_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,p} \\ a_{2,1} & \cdots & a_{2,j} & \cdots & a_{2,p} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,p} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \mathsf{AX}.$$

Exemple 8 : Reprenons l'application $u: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ de l'exemple (6) où $(x,y)_{\mathcal{B}} \longmapsto (x+y,2x-y,3y)_{\mathcal{B}'}$

 $\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u) = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix}$ dans les bases canoniques respectives de \mathbb{R}^2 et \mathbb{R}^3 .

On peut calculer l'image de $(5\,;-2)$ de deux manières maintenant :

1.
$$u((5;-2)) = (3;12;-6)$$
.

2.
$$u((5;-2)) = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix} \times \begin{pmatrix} 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ 12 \\ -6 \end{pmatrix}$$
.

À retenir 2:

Si $\mathbf{A} \in \mathscr{M}_{n,p}(\mathbb{K})$ est une matrice alors sa $j^{\mathrm{ème}}$ colonne \mathbf{C}_j s'obtient par le produit matriciel $\mathbf{C}_j = \mathbf{A} \cdot \mathbf{E}_j$ où \mathbf{E}_j la $j^{\mathrm{ème}}$ matrice de la base canonique de $\mathscr{M}_{p,1}(\mathbb{K})$.

Exemple 9:

$$\underbrace{\begin{pmatrix} 2 & \mathbf{1} & 3 \\ 4 & \mathbf{5} & 6 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}}_{\mathbf{E}_2} = \underbrace{\begin{pmatrix} \mathbf{1} \\ \mathbf{5} \end{pmatrix}}_{\mathbf{C}_2}$$

II.2 Matrice d'une composée d'applications linéaires

Exercice 6 (Introduction) : On munit respectivement \mathbb{R}^3 , \mathbb{R}^4 et \mathbb{R}^2 des bases $\mathcal{B}=(e_1,e_2,e_3)$, $\mathcal{C}=(f_1,f_2,f_3,f_4)$, et $\mathcal{D}=(g_1,g_2)$.

On considère :

- $\bullet \ u \in \mathscr{L}\left(\mathbb{R}^3\,;\mathbb{R}^4\right) \text{ telle que } \mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u) = \mathrm{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$
- $v \in \mathcal{L}\left(\mathbb{R}^4; \mathbb{R}^2\right)$ telle que $\mathrm{Mat}_{\mathcal{C}, \mathcal{D}}(v) = \mathrm{B} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}$.

Déterminer $\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(v \circ u)$.

Théorème 4:

Soient

- E un K-ev de dimension p muni d'une base \mathcal{B} ;
- F un \mathbb{K} -ev de dimension q muni d'une base \mathcal{C} ;
- G un K-ev de dimension n muni d'une base \mathcal{D} .

On considère deux applications linéaires $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$.

Alors:

$$\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(v\circ u)=\operatorname{Mat}_{\mathcal{C},\mathcal{D}}(v)\times\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u).$$

Preuve : Le théorème (3) démontré, celui-ci ne se résume plus qu'à utiliser l'associativité du produit matriciel.

Soit $x \in E$. Posons y = u(x) et z = v(y).

On considère le diagramme fonctionnel :

On note $X = \operatorname{Mat}_{\mathcal{B}}(x)$, $Y = \operatorname{Mat}_{\mathcal{C}}(y)$, $Z = \operatorname{Mat}_{\mathcal{C}}(z)$, $A = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$, $B = \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(v)$.

D'après le théorème (3), Y = AX et Z = BY.

D'où
$$Z = B(AX) = (BA)X$$
.

La matrice de $v\circ u$ dans les bases $\mathcal B$ et $\mathcal D$ est donc :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(v \circ u) = \operatorname{BA} = \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(v) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u).$$

Remarque: On pouvait aussi le démontrer directement si nécessaire.

On pose encore:

- $\bullet \ \mathcal{B}=(e_1,\ldots,e_p) \ \mathcal{C}=(f_1,\ldots,f_q) \ \text{et} \ \mathcal{D}=(g_1,\ldots,g_n) \ \text{des bases de } E, \ F \ \text{et } G \ \text{respectivement}.$
- $\bullet \ \ \mathbf{A} = \mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u) = (a_{k,j})_{\substack{1 \leqslant k \leqslant q, \\ 1 \leqslant j \leqslant p}} \ \mathbf{B} = \mathrm{Mat}_{\mathcal{C},\mathcal{D}}(v) = (b_{i,k})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant k \leqslant q}} \ \mathbf{et} \ \mathbf{C} = \mathrm{Mat}_{\mathcal{B},\mathcal{D}}(v \circ u) = (c_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}.$

D'une part,

$$\forall \, j \in [\![1\,;p]\!]\,,\; (v \circ u)(e_j) = \sum_{i=1}^n c_{i,j}g_i.$$

D'autre part,

$$\begin{split} \big(v \circ u\big)(e_j) &= v\Big(u(e_j)\big) = v\left(\sum_{k=1}^q a_{k,j} f_k\right) = \sum_{k=1}^q a_{k,j} v\left(f_k\right) = \sum_{k=1}^q a_{k,j} \left(\sum_{i=1}^n b_{i,k} g_i\right) \\ &= \sum_{i=1}^n \left(\sum_{k=1}^q b_{i,k} a_{k,j}\right) g_i = \sum_{i=1}^n \left(\mathrm{BA}\right)_{i,j} g_i. \end{split}$$

Par unicité des coordonnées, on a ainsi :

$$\forall \ (i\,;j) \in \llbracket 1\,;n\rrbracket \times \llbracket 1\,;p\rrbracket \,, \ c_{i,j} = \sum_{k=1}^q b_{i,k} a_{k,j} \iff \mathcal{C} = \mathcal{B} \times \mathcal{A}.$$

Corollaire 4.1:

Soient $u \in \mathcal{L}(E)$, \mathcal{B} une base de E de dimension finie n et $A = \operatorname{Mat}_{\mathcal{B}}(u)$.

Alors,

- \blacksquare u est un projecteur si, et seulement si $A^2 = A$.
- \blacksquare u est une symétrie si, et seulement si $A^2 = I_n$.

Exercice 7 : Soit $f \in \mathcal{L}(\mathbb{R}^2)$ défini par f(x;y) = (3x + 6y; -x - 2y).

Écrire la matrice M de f dans la base canonique de \mathbb{R}^2 , et en déduire que f est un projecteur.

Correction: Pas trop compliqué ...

On a
$$M = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}$$
 et $M^2 = M \implies f \circ f = f$.

Donc, f est bien un projecteur.

II.3 Matrice de la réciproque d'un isomorphisme

Théorème 5:

Soient

- E un K-ev de dimension n muni d'une base \mathcal{B} .
- F un \mathbb{K} -ev de dimension n muni d'une base \mathcal{B}' .

On considère $u \in \mathcal{L}(\mathbf{E}; \mathbf{F})$.

u est un isomorphisme \iff $\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u)$ est inversible.

Et dans ce cas,

$$\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(u^{-1}) = \left(\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u)\right)^{-1}.$$

Preuve : On note $n = \dim F$ et $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u)$.

 (\Rightarrow) : Si u est bijective alors $u^{-1}\circ u=\mathrm{I} d_{\mathrm{E}}$ et $u\circ u^{-1}=\mathrm{I} d_{\mathrm{F}}.$

D'après le théorème (4), en terme matriciel cela s'écrit :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(u^{-1}\circ u) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(\operatorname{Id}_{\operatorname{E}}) \iff \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(u^{-1}) \times \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u) = \operatorname{I}_n.$$

Mais aussi,

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(u\circ u^{-1})=\operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(\operatorname{Id}_{\operatorname{F}})\iff \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u)\times \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(u^{-1})=\operatorname{I}_n.$$

La matrice $\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(u)$ est donc inversible, d'inverse $\mathrm{Mat}_{\mathcal{B}',\mathcal{B}}(u^{-1}).$

 $(\Leftarrow) : \text{Supposons que } \mathbf{A} \in \mathscr{G}l_n(\mathbb{K}) \text{, et montrons que } u \text{ est bijective. Tout repose sur le } \mathbf{th\acute{e}or\grave{e}me} \text{ } (\mathbf{2}).$

Posons v l'application linéaire de F dans E telle que $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(v)=A^{-1}$; elle existe car $\mathscr{L}(F;E)$ et $\mathscr{M}_n(\mathbb{K})$ sont isomorphes.

On transpose encore les deux égalités matricielles $AA^{-1}=I_n$ et $A^{-1}A=I_n$ d'un point de vue application linéaire.

$$\begin{split} \mathbf{A}\mathbf{A}^{-1} &= \mathbf{I}_n \implies \mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(u) \times \mathrm{Mat}_{\mathcal{B}',\mathcal{B}}(v) = \mathrm{Mat}_{\mathcal{B}',\mathcal{B}'}(\mathbf{I}d_{\mathbf{F}}) \\ &\iff \mathrm{Mat}_{\mathcal{B}',\mathcal{B}'}(u \circ v) = \mathrm{Mat}_{\mathcal{B}',\mathcal{B}'}(\mathbf{I}d_{\mathbf{F}}). \end{split}$$

Comme $\mathscr{L}(F)$ et $\mathscr{M}_n(\mathbb{K})$ sont isomorphes, on en déduit que $u\circ v=\mathrm{Id}_F$ *i.e.* u est inversible à droite ou surjective.

De la même manière $A^{-1}A = I_n$ entraı̂ne que $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(v \circ u) = \mathrm{Mat}_{\mathcal{B},\mathcal{B}}(\mathrm{I}d_{\mathrm{E}})$ puis, grâce à l'isomorphisme $\mathscr{L}(\mathrm{E}) \simeq \mathscr{M}_n(\mathbb{K})$, que $v \circ u = \mathrm{I}d_{\mathrm{E}}$ i.e. u est inversible à gauche ou injective.

En conclusion, u est bijective.

Exercice 8 : Soit f l'application linéaire définie par :

$$\begin{array}{ccc} f: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}_2[\mathbf{X}] \\ & (a\,;b\,;c) & \longmapsto & a+b+b\mathbf{X}+(b+c)\mathbf{X}^2. \end{array}$$

Montrer que f est bijective et déterminer son inverse.

Corollaire 5.1:

Soient E un K-espace vectoriel de dimension n, \mathcal{B} une base de E et $(u_1, \dots, u_n) \in \mathbf{E}^n$ une famille d'éléments de E. Alors :

 $\operatorname{Mat}_{\mathcal{B}}(u_1,\dots,u_n)$ est inversible $\iff (u_1,\dots,u_n)$ est une base de E.

Autrement dit, une matrice carrée est inversible si, et seulement si les vecteurs formés par ses colonnes forment une base de E.

Preuve : Notons $\mathcal{B}=(e_1,\ldots,e_n)$ et $u\in\mathcal{L}(\mathbf{E})$ l'endomorphisme [1] vérifiant

$$\forall i \in [1; n], \ u(e_i) = u_i.$$

Par construction, on a alors $Mat_{\mathcal{B}}(u) = Mat_{\mathcal{B}}(u_1, \dots, u_n)$.

$$\begin{split} \operatorname{Mat}_{\mathcal{B}}(u_1,\dots,u_n) \text{ est inversible } &\iff \operatorname{Mat}_{\mathcal{B}}(u) \text{ est inversible} \\ &\iff u \text{ est inversible d'après le } \text{ } \operatorname{th\'eor\`eme} \text{ } (5) \\ &\iff \left(u(e_1),\dots,u(e_n)\right) = (u_1,\dots,u_n) \text{ est une base de } \operatorname{E}. \end{split}$$

Exemple 10 (Matrice de Vandermonde) : Soient $a_0, a_1, ..., a_n \in \mathbb{K}$ des scalaires deux à deux distincts, $(L_0, ..., L_n)$ les polynômes de Lagrange associés.

On rappelle que, dans les cas où les a_i sont distincts, (L_0, \dots, L_n) forme une base de $\mathbb{K}_n[X]$ et que tout polynôme $P \in \mathbb{K}_n[X]$ se décompose donc de manière unique dans cette base sous la forme :

$$\mathbf{P} = \mathbf{P}(a_0)\mathbf{L}_0 + \mathbf{P}(a_1)\mathbf{L}_1 + \ldots + \mathbf{P}(a_n)\mathbf{L}_n.$$

^{[1].} Je vous rappelle que l'on sait qu'un tel morphisme existe et est même unique d'après le chapitre précédent d'algèbre linéaire.

La matrice de la base canonique de $\mathbb{K}_n[\mathbf{X}]$ dans la base $(\mathbf{L}_0,\dots,\mathbf{L}_n)$ des polynômes de Lagrange est donc :

$$\mathbf{M}(a_0,\dots,a_n) = \begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \cdots & a_n^n \end{pmatrix}.$$

On en déduit que si $a_0,\ a_1,\ \dots,\ a_n$ sont deux à deux distincts alors la matrice $\mathrm{M}(a_0,\dots,a_n)$ est inversible.

III/ Changement de bases _____

III.1 Matrice de passage

Définition 4 : Soit E un \mathbb{K} -ev de dimension finie n.

On considère deux bases \mathcal{B} et \mathcal{B}' de E.

On appelle matrice de passage de \mathcal{B} à \mathcal{B}' , notée $P_{\mathcal{B}}^{\mathcal{B}'}$ ou $P_{\mathcal{B},\mathcal{B}'}$, la matrice de la famille \mathcal{B}' dans la base \mathcal{B} :

$$P_{\mathcal{B}}^{\mathcal{B}'} = \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}').$$

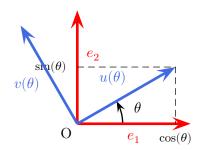
Exemple 11:

1. Dans le plan $\overrightarrow{\mathcal{P}}$ muni de la base $\mathcal{B}=(\vec{i},\vec{j})$, on considère $\vec{u}=3\vec{i}+\vec{j}$ et $\vec{v}=-\vec{i}+2\vec{j}$.

 $\text{La famille } \mathcal{B}' = (\vec{u}, \vec{v}) \text{ forme une base de } \overrightarrow{\mathcal{P}} \text{ et } \mathbf{P}_{\mathcal{B}}^{\mathcal{B}'} = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}.$

2. Dans le plan vectoriel $\vec{\mathcal{E}}_2$, la matrice de passage de la base canonique $(e_1\,;e_2)$ à la base $(u(\theta);v(\theta))$ où $u(\theta)=\cos(\theta)e_1+\sin(\theta)e_2$ et $v(\theta)=-\sin(\theta)e_1+\cos(\theta)e_2$ est :

$$\mathbf{P} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$



 $\begin{array}{l} \textbf{Figure XXX.1} - \text{La matrice de passage P} = \left(\begin{smallmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{smallmatrix} \right) \text{ de la base } \mathcal{B} = (e_1 \, ; e_2) \text{ à la base } \mathcal{B}_{\theta} = (u(\theta) \, ; v(\theta)) \text{ est une matrice de rotation.} \\ \end{array}$

Exercice 9 : On se place dans le \mathbb{R} -ev \mathbb{R}^2 .

On note
$$\mathcal{B}=(e_1\,;e_2)$$
 où $\left\{egin{aligned} e_1&=(1\,;0)\ e_2&=(1\,;1) \end{aligned}
ight.$ et $\mathcal{C}=(arepsilon_1\,;arepsilon_2)$ où $\left\{egin{aligned} arepsilon_1&=(-1\,;1)\ arepsilon_2&=(0\,;1) \end{aligned}
ight.$

- 1. Montrer que \mathcal{B} et \mathcal{C} sont des bases de \mathbb{R}^2 .
- 2. Déterminer $P = P_{\mathcal{B}}^{\mathcal{C}}$ et $Q = P_{\mathcal{C}}^{\mathcal{B}}$.
- 3. Vérifier que $PQ = QP = I_2$.

Tout d'abord quelques propriétés qui découlent de la définition :

Proposition 6:

Soit E un K-ev de dimension finie n. On considère \mathcal{B} , \mathcal{B}' et \mathcal{B}'' des bases de E. Alors :

1.
$$P_{\mathcal{B}}^{\mathcal{B}'} = Mat_{\mathcal{B}',\mathcal{B}}(Id_{E}).$$

3.
$$P_{\mathcal{B}}^{\mathcal{B}''} = P_{\mathcal{B}}^{\mathcal{B}'} P_{\mathcal{B}'}^{\mathcal{B}''}$$
.

$$2. \ \mathbf{P}_{\mathcal{B}}^{\mathcal{B}} = \mathbf{I}_n.$$

4.
$$P_{\mathcal{B}}^{\mathcal{B}'}$$
 est inversible et $(P_{\mathcal{B}}^{\mathcal{B}'})^{-1} = P_{\mathcal{B}'}^{\mathcal{B}}$.

 $\textbf{Preuve}: \ \ \text{Notons} \ \mathcal{B}=(e_1,e_2,\ldots,e_n) \ \text{et} \ \mathcal{B}'=(e_1',e_2',\ldots,e_n').$

1. Par définition,

$$\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{Id}_{\operatorname{E}}) = \operatorname{Mat}_{\mathcal{B}}\big(\operatorname{Id}_{\operatorname{E}}(e'_1),\operatorname{Id}_{\operatorname{E}}(e'_2),\dots,\operatorname{Id}_{\operatorname{E}}(e'_n)\big) = \operatorname{Mat}_{\mathcal{B}}(e'_1,e'_2,\dots,e'_n) = \operatorname{P}_{\mathcal{B}}^{\mathcal{B}'}.$$

- 2. D'après le résultat précédent, $P^{\mathcal{B}}_{\mathcal{B}}=\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(\mathrm{I}d_{\mathrm{E}})=\mathrm{I}_{n}.$
- $3. \ \ P_{\mathcal{B}}^{\mathcal{B}'}P_{\mathcal{B}'}^{\mathcal{B}''} = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{Id}_{\operatorname{E}})\operatorname{Mat}_{\mathcal{B}'',\mathcal{B}'}(\operatorname{Id}_{\operatorname{E}}) = \operatorname{Mat}_{\mathcal{B}'',\mathcal{B}}(\operatorname{Id}_{\operatorname{E}}) = \operatorname{Mat}_{\mathcal{B}'',\mathcal{B}}(\operatorname{Id}_{\operatorname{E}}) = \operatorname{P}_{\mathcal{B}}^{\mathcal{B}''}.$
- 4. On applique le résultat précédent avec $\mathcal{B}''=\mathcal{B}$, et on obtient :

$$\mathrm{P}_{\mathcal{B}}^{\mathcal{B}'}\mathrm{P}_{\mathcal{B}'}^{\mathcal{B}}=\mathrm{P}_{\mathcal{B}}^{\mathcal{B}}=\mathrm{I}_n\quad\text{ et }\quad \mathrm{P}_{\mathcal{B}'}^{\mathcal{B}}\mathrm{P}_{\mathcal{B}}^{\mathcal{B}'}=\mathrm{P}_{\mathcal{B}'}^{\mathcal{B}'}=\mathrm{I}_n.$$

Par conséquent $\mathrm{P}_{\mathcal{B}}^{\mathcal{B}'} \in \mathscr{G}l_n(\mathbb{K})$ et $\left(\mathrm{P}_{\mathcal{B}}^{\mathcal{B}'}\right)^{-1} = \mathrm{P}_{\mathcal{B}'}^{\mathcal{B}}$.

ATTENTION

à l'ordre des bases dans $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{I}d_{\operatorname{E}})!$

Exemple 12 : En reprenant les exemples précédents :

1.
$$P_{\mathcal{B}'}^{\mathcal{B}} = (P_{\mathcal{B}}^{\mathcal{B}'})^{-1} = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}^{-1} = \frac{1}{7} \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}.$$

D'où,
$$\begin{cases} \vec{i} = \frac{2}{7}\vec{u} - \frac{1}{7}\vec{v} \\ \vec{j} = \frac{1}{7}\vec{u} + \frac{3}{7}\vec{v} \end{cases}$$

2.
$$P_{\mathcal{B}'}^{\mathcal{B}} = (P_{\mathcal{B}}^{\mathcal{B}'})^{-1} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^{-1} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$\label{eq:decomposition} \text{D'où, } \left\{ \begin{array}{ll} e_1 &= \cos(\theta) u(\theta) + \sin(\theta) v(\theta) \\ e_2 &= -\sin(\theta) u(\theta) + \cos(\theta) v(\theta) \end{array} \right.$$

III.2 Formules de changement de bases

Dans une soirée, une matrice propose à une matrice inversible de danser avec elle :

Ah non, désolée je ne reste pas, je suis de passage!

Proposition 7:

Soit E un \mathbb{K} -ev de dimension finie n muni de deux bases \mathcal{B} et \mathcal{B}' .

On note $P = P_{\mathcal{B}}^{\mathcal{B}'}$ la matrice de passage de \mathcal{B} à \mathcal{B}' et, pour tout $x \in E$, $X = \operatorname{Mat}_{\mathcal{B}}(x)$ et $X' = \operatorname{Mat}_{\mathcal{B}'}(x)$ les matrices respectives des coordonnées de x dans \mathcal{B} et \mathcal{B}' .

Alors:

$$X = PX'$$
.

$$E, \mathcal{B} \xrightarrow{\mathrm{I}d_{\mathrm{E}}} E, \mathcal{B}'$$

$$X \qquad X'$$

 $\textbf{Preuve}: \ \mathsf{On} \ \mathsf{a} \ \mathsf{PX}' = \mathrm{Mat}_{\mathcal{B}',\mathcal{B}}(\mathrm{I}d_{\mathrm{E}}) \times \mathrm{Mat}_{\mathcal{B}'}(x) = \mathrm{Mat}_{\mathcal{B}.\mathcal{B}}(\mathrm{I}d_{\mathrm{E}}(x)) = \mathrm{Mat}_{\mathcal{B}}(x) = \mathrm{X}.$

Remarque : la matrice de passage de \mathcal{B} à \mathcal{B}' donne les anciennes coordonnées (dans \mathcal{B}) en fonction des nouvelles (dans \mathcal{B}')! Si l'on veut les nouvelles en fonction des anciennes, il faut inverser la matrice de passage : $X' = P^{-1}X$.

Dans le cas d'une famille ${\mathcal F}$ de vecteurs de E, on vérifiera que l'on a encore :

$$\operatorname{Mat}_{\mathcal{B}}(\mathcal{F}) = \operatorname{P} \operatorname{Mat}_{\mathcal{B}'}(\mathcal{F}).$$

Théorème 8:

Soient E et F des K-espaces vectoriels de dimension p et n, \mathcal{B} et \mathcal{B}' deux bases de E, \mathcal{C} et \mathcal{C}' deux bases de F et $u \in \mathcal{L}(E; F)$.

Notons
$$P = P_{\mathcal{B}}^{\mathcal{B}'}$$
, $Q = P_{\mathcal{C}}^{\mathcal{C}'}$, $A = Mat_{\mathcal{B},\mathcal{C}}(u)$ et $A' = Mat_{\mathcal{B}',\mathcal{C}'}(u)$.

Alors:

$$A' = Q^{-1}AP.$$

Vocabulaire: On dit alors que les matrices A et A' sont équivalentes.

On pourra vérifier que la relation d'équivalence est une relation d'équivalence sur l'ensemble des matrices de $\mathcal{M}_{n,p}(\mathbb{K})$.

$$E, \mathcal{B} \xrightarrow{\qquad \qquad } F, \mathcal{C}$$

$$Id_{E} \uparrow P \qquad Q^{-1} \downarrow Q \uparrow Id_{F}$$

$$E, \mathcal{B}' \xrightarrow{\qquad \qquad } F, \mathcal{C}'$$

Preuve: Il suffit de suivre le diagramme fonctionnel ci-dessus :

$$\begin{split} \mathbf{Q}^{-1}\mathbf{A}\mathbf{P} &= \mathbf{P}_{\mathcal{C}'}^{\mathcal{C}} \times \mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u) \times \mathbf{P}_{\mathcal{B}}^{\mathcal{B}'} = \mathrm{Mat}_{\mathcal{C},\mathcal{C}'}(\mathrm{I}d_{\mathrm{F}}) \times \mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u) \times \mathrm{Mat}_{\mathcal{B}',\mathcal{B}}(\mathrm{I}d_{\mathrm{E}}) \\ &= \mathrm{Mat}_{\mathcal{B}',\mathcal{C}'}(\mathrm{I}d_{\mathrm{F}} \circ u \circ \mathrm{I}d_{\mathrm{E}}) = \mathrm{Mat}_{\mathcal{B}',\mathcal{C}'}(u) \\ &= \mathbf{A}'. \end{split}$$

Exemple 13 (Cas d'une forme linéaire) : Soit E un \mathbb{K} -espace vectoriel de dimension n, \mathcal{B} et \mathcal{B}' deux bases de E, $\mathcal{C} = (1_{\mathbb{K}})$ une (LA) base de \mathbb{K} et $u \in \mathcal{L}(E; \mathbb{K})$.

Notons
$$P = P_{\mathcal{B}}^{\mathcal{B}'}$$
, $A = Mat_{\mathcal{B},\mathcal{C}}(u)$ et $A' = Mat_{\mathcal{B}',\mathcal{C}}(u)$.

Alors,
$$Q = P_{\mathcal{C}}^{\mathcal{C}} = I_1 = (1)$$
 puis

$$A' = AP \in \mathscr{M}_{1,n}(\mathbb{K}).$$

Corollaire 8.1 (Cas d'un endomorphisme) :

Soit E un K-espace vectoriel de dimension n, \mathcal{B} et \mathcal{B}' deux bases de E et $u \in \mathcal{L}(E)$.

Notons
$$P = P_{\mathcal{B}}^{\mathcal{B}'}$$
, $A = Mat_{\mathcal{B}}(u)$ et $A' = Mat_{\mathcal{B}'}(u)$.

Alors:

$$A' = P^{-1}AP$$
.

Posons Y' = A'X' et Y = AX. On a alors $Y' = A'X' = (P^{-1}A\underbrace{P)(P^{-1}X)} = P^{-1}(AX) = P^{-1}Y$ et on retrouve Y = PY'. La proposition (7) est cohérente.

Vocabulaire: On dit alors que les matrices A et A' sont semblables.

On pourra vérifier que la relation de similitude est également une relation d'équivalence sur l'ensemble des matrices carrées $\mathcal{M}_n(\mathbb{K})$.

Exercice 10 : On se place dans le \mathbb{R} -ev \mathbb{R}^3 .

On note $\mathcal{B}=(e_1\,;e_2\,;e_3)$ la base canonique de \mathbb{R}^3 et $\mathcal{B}'=(\varepsilon_1\,;\varepsilon_2\,;\varepsilon_3)$ la famille de \mathbb{R}^3 définie par :

$$\varepsilon_1 = (-1; 2; 0), \ \varepsilon_2 = (1; -1; 0) \ \text{et} \ \varepsilon_3 = (-2; 3; 1).$$

- 1. Montrer que \mathcal{B}' est une base de \mathbb{R}^3 .
- 2. Soit P la matrice de passage de \mathcal{B} à \mathcal{B}' . Déterminer P et P^{-1} .
- 3. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ définie par $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $(x\,;y\,;z) \longmapsto (-3x-2y-4z\,;4x+3y+5z\,;2z)$

Déterminer la matrice de f dans la base \mathcal{B}' .

Correction :
$$Mat_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Nous venons en fait d'effectuer sans le dire notre première diagonalisation de matrices, mais vous attendrez l'an prochain pour en apprendre (beaucoup) plus sur ce sujet.

Remarque : Un vecteur non nul u vérifiant $f(u)=\lambda u$ pour un certain réel λ est appelé vecteur propre de l'application f, et le réel λ est la valeur propre associée à u. Chercher une base dans laquelle la matrice de f devient diagonale revient exactement à chercher une base constituée de vecteurs propres de f. L'année prochaine donc ...

${ m IV}/{ m \ Noyau}$, image et rang d'une matrice

IV.1 Application linéaire canoniquement associée à une matrice

 $\text{\bf Rappel 1: Soit } \big(a_{i,j}\big)_{\substack{i\in [\![1:n]\!]\\j\in [\![1:p]\!]}}\in \mathscr{M}_{n,p}(\mathbb{K}).$

On appelle application linéaire canoniquement associée à A l'application $u_{\mathbf{A}} \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ définie par :

Quel est l'intérêt de cette application?

Notons $\mathcal{E} = (\mathbf{E}_i)_{1 \leqslant i \leqslant p}$ une base de $\mathcal{M}_{p,1}(\mathbb{K})$, \mathcal{B} une base de $\mathcal{M}_{n,1}(\mathbb{K})$ et \mathbf{C}_j la $j^{\text{ème}}$ colonne de $\mathbf{A} \in \mathcal{M}_{n,p}(\mathbb{K})$ écrite entre les bases \mathcal{E} et \mathcal{B} .

Par définition,

$$\begin{split} \operatorname{Mat}_{\mathcal{E},\mathcal{B}}(u_{\mathbf{A}}) &= \Big(u_{\mathbf{A}}(\mathbf{E}_1) \cdots u_{\mathbf{A}}(\mathbf{E}_p)\Big)_{\mathcal{B}} = \Big(\mathbf{A}\mathbf{E}_1 \cdots \mathbf{A}\mathbf{E}_p\Big)_{\mathcal{B}} \\ &= \Big(\mathbf{C}_1 \cdots \mathbf{C}_p\Big)_{\mathcal{B}} = \mathbf{A}. \end{split}$$

Moralité : $\forall A \in \mathscr{M}_{n,p}(\mathbb{K})$, la matrice dans les bases canoniques de $\mathscr{M}_{p,1}(\mathbb{K})$ et $\mathscr{M}_{n,1}(\mathbb{K})$ de u_A coïncide avec A.

Exercice 11 : Soit
$$A = \begin{pmatrix} 2 & 5 & -2 \\ -1 & 2 & 3 \end{pmatrix}$$
.

Déterminer u_A .

IV.2 Noyau, image et rang d'une matrice

Définition 5: Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et u_A l'application canoniquement associée à A.

— On appelle noyau de A, et on note $\ker(A)$, le noyau de u_A :

$$\ker(\mathbf{A}) = \ker(u_{\mathbf{A}}).$$

— On appelle image de A, et on note $\operatorname{Im}(A)$, l'image de u_A :

$$\operatorname{Im}(A) = \operatorname{Im}(u_A)$$
.

— On appelle rang de A, et on note rg (A), le rang de u_A :

$$\operatorname{rg}(A) = \operatorname{rg}(u_A).$$

Remarques:

— Notons
$$\mathbf{A} = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$$
 et $\mathbf{X} = (x_1 \; ; \ldots \; ; x_p).$

$$\mathbf{X} \in \ker (\mathbf{A}) \iff \mathbf{A}\mathbf{X} = (0)_{n,1} \iff \left\{ \begin{array}{ll} \displaystyle \sum_{i=1}^p a_{1,i} \, x_i & = & 0 \\ \\ & = & \\ \displaystyle \sum_{i=1}^p a_{n,i} \, x_i & = & 0 \end{array} \right.$$

Les lignes d'une matrice donnent un système d'équations de son noyau.

Exemple 14 (Noyau d'une matrice) : Le noyau d'une matrice se lit souvent bien sur ses coefficients.

Notons par exemple A la matrice
$$\begin{pmatrix}1&2&3&-6\\0&1&1&-2\\1&1&2&-4\end{pmatrix}$$
 et C_1,C_2,C_3,C_4 ses colonnes.

Assurez-vous que vous comprenez parfaitement les observations suivantes :

— D'abord, $\mathbf{C}_3=\mathbf{C}_1+\mathbf{C}_2,$ donc $\mathbf{C}_1+\mathbf{C}_2-\mathbf{C}_3=0,$ et on a :

$$\mathbf{A} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} i.e. \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} \in \ker\left(\mathbf{A}\right).$$

— De même,
$$C_1 + C_2 + C_3 + C_4 = 0$$
, donc $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \in \ker(A)$.

Exemple 15 : La dérivation polynomiale $D: P \longmapsto P'$ sur $\mathbb{K}[X]$ a pour noyau $\ker(D) = \mathbb{K}_0[X]$.

Exemple 16 : Soit
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x,y,z) \longmapsto (2x+y-z,x-y)$$

Alors,

$$\ker(f) = \ker\begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \operatorname{vect}\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}.$$

En effet, il est déjà clair que $C_1 + C_2 - 3C_3 = 0$. En résolvant le système f(x) = 0, on a aussi :

$$(x,y,z) \in \ker(f) \iff \begin{cases} 2x+y-z &= 0 \\ x-y &= 0 \end{cases} \iff \begin{cases} x=x \\ y=x \\ z=3x \end{cases}$$

Enfin, $\ker\left(f\right) = \operatorname{vect}\left(\left(1\,;1\,;3\right)\right) = \left\{\left(x,x,3x\right)/x \in \mathbb{R}\right\}.$

— Notons (e_1,\ldots,e_p) la base canonique de \mathbb{K}^p et $\mathbf{A}=\begin{pmatrix} \mathbf{C}_1 & \cdots & \mathbf{C}_p \end{pmatrix} \in \mathscr{M}_{n,p}(\mathbb{K}).$

Par définition du rang d'une matrice, on a :

$$\operatorname{Im}\left(\mathbf{A}\right) = \operatorname{Im}\left(u_{\mathbf{A}}\right) = \operatorname{vect}\left(u_{\mathbf{A}}(e_1), \dots, u_{\mathbf{A}}(e_n)\right) = \operatorname{vect}\left(\mathbf{C}_1, \dots, \mathbf{C}_n\right).$$

Les colonnes d'une matrice engendrent son image.

En particulier,

$$\operatorname{rg}\left(\mathbf{A}\right)=\operatorname{rg}\left(u_{\mathbf{A}}(e_1),\ldots,u_{\mathbf{A}}(e_n)\right)=\operatorname{rg}\left(\mathbf{A}e_1,\ldots,\mathbf{A}e_n\right)=\operatorname{rg}\left(\mathbf{C}_1,\ldots,\mathbf{C}_n\right).$$

Pour ces raisons, l'image d'une matrice peut être calculée rapidement par des opérations élémentaires sur les COLONNES.

Exemple 17 (Image d'une matrice) :

$$\operatorname{Im} \begin{pmatrix} 1 & 2 & 4 & 0 \\ 1 & -1 & 0 & 1 \\ 2 & 1 & 4 & 1 \end{pmatrix} \underset{\substack{C_2 \leftarrow 2C_1 - C_2 \\ C_3 \leftarrow 4C_1 - C_3}}{=} \operatorname{Im} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 4 & 1 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \operatorname{Im} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \underset{\substack{C_1 \leftarrow C_1 - C_2 \\ C_1 \leftarrow C_1 - C_2}}{=} \operatorname{Im} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
$$= \operatorname{vect} \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}.$$

Corollaire 8.2:

Le rang d'une matrice est égal au rang de la famille formée de ses vecteurs colonnes.

Exemple 18 : L'application $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ est canoniquement associée à la $(x,y,z) \longmapsto (x+y,-x+y,z)$

matrice $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ dont les vecteurs colonnes sont clairement libres.

On en déduit que f est de rang 3 donc surjective, donc bijective. En somme, un automorphisme de \mathbb{R}^3 .

— Le rang d'une matrice a déjà été défini : c'est le nombre de pivots d'une matrice échelonnée réduite équivalente par lignes à A. On verra que ces deux définitions sont cohérentes.

Théorème 9:

Soit $A \in \mathscr{M}_{n,p}(\mathbb{K})$.

• $\operatorname{rg}(A) \leqslant \min(p; n)$.

• $\dim \ker (A) + \operatorname{rg} (A) = p$.

(Théorème du rang)

 $\textbf{Preuve}: \ \textbf{Il suffit d'appliquer le théorème du rang à $u_{\rm A}$, l'application linéaire canoniquement associée à A. }$

Remarque: Le rang d'une matrice vaut donc $p - \dim \ker (A)$.

Or, ker(A) est obtenu en résolvant le système AX = 0.

Si l'on note r le nombre de pivots de la matrice échelonnée réduite équivalente par lignes à A, on a vu qu'on avait r inconnues principales, donc p-r degrés de liberté.

Ainsi dim $\ker(A) = p - r$ et donc $p - \dim \ker(A) = r$. La cohérence des deux définitions est assurée.

Exercice 12 : Soit
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 0 \\ 4 & 1 & -1 \end{pmatrix}$$
.

Déterminer :

1. ker (A).

2. Im (A) et rg (A).

Correction:

1. Soit $(x; y; z) \in \mathbb{R}^3$.

$$(x;y;z) \in \ker(\mathbf{A}) \iff \mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \iff \begin{cases} x + 2y - z &= 0 \\ 3x - y &= 0 \\ 4x + y - z &= 0 \end{cases}$$
$$\iff \begin{cases} x + 2y - z &= 0 \\ 3x - y &= 0 \end{cases} \iff \begin{cases} 7x - z &= 0 \\ 3x - y &= 0 \end{cases} \iff \begin{cases} x = x \\ y = 3x \\ z = 7x \end{cases}$$
$$\iff (x;y;z) \in \operatorname{vect}((1;3;7)).$$

Donc $\ker(A) = \text{vect}((1; 3; 7)).$

2. Comme $\dim (\ker (A)) = 1$, d'après le théorème du rang $\operatorname{rg} (A) = 2$.

Les deux premiers vecteurs colonnes $\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ ne sont pas colinéaires donc libres dans un espace de dimension 2. Ils en forment une base et on a :

$$\operatorname{Im}\left(A\right) = \operatorname{vect}\left(\begin{pmatrix} 1\\3\\4 \end{pmatrix}; \begin{pmatrix} 2\\-1\\1 \end{pmatrix}\right).$$

IV.3 Caractérisation des matrices inversibles

Théorème 10:

$$\mathbf{A} \in \mathscr{G}l_n(\mathbb{K}) \iff \ker\left(\mathbf{A}\right) = \left\{0\right\} \iff \operatorname{Im}\left(\mathbf{A}\right) = \mathbb{K}^n \iff \operatorname{rg}\left(\mathbf{A}\right) = n$$

Preuve:

$$\mathbf{A} \in \mathscr{G}l_n(\mathbb{K}) \iff u_{\mathbf{A}} \in \mathscr{G}l(\mathbb{K}^n) \iff \ker\left(u_{\mathbf{A}}\right) = \{0\} \iff \mathrm{Im}\left(u_{\mathbf{A}}\right) = \mathbb{K}^n \iff \mathrm{rg}\left(u_{\mathbf{A}}\right) = n.$$

IV.4 Invariance du rang

Proposition 11:

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

- 1. Si $P \in \mathcal{G}l_p(\mathbb{K})$, alors rg(AP) = rg(A).
- 2. Si $Q \in \mathcal{G}l_n(\mathbb{K})$, alors $\operatorname{rg}(QA) = \operatorname{rg}(A)$.

Preuve : Il suffit de raisonner sur les applications canoniquement associées à A, P, et Q et d'utiliser les résultats correspondants portant sur les applications linéaires.

Notons u, v et w les applications linéaires canoniquement respectivement associées à A, P et Q.

Notons \mathcal{B}_p et \mathcal{B}_n les bases canoniques de \mathbb{K}^p et $\mathbb{K}^n.$

 $\mathsf{Alors}\; \mathsf{AP} = \mathrm{Mat}_{\mathcal{B}_p,\mathcal{B}_n}(u) \mathrm{Mat}_{\mathcal{B}_p}(v) = \mathrm{Mat}_{\mathcal{B}_p,\mathcal{B}_n}(u \circ v).$

Ainsi, $u \circ v$ est canoniquement associée à AP.

De même, $w \circ u$ est canoniquement associée à QA.

Comme P et Q sont inversibles, v et w sont des isomorphismes.

Or, on a déjà vu dans un chapitre précédent que, dans ce cas, $\operatorname{rg}(u \circ v) = \operatorname{rg}(u) = \operatorname{rg}(u \circ w)$.

Donc,
$$rg(AP) = rg(A) = rg(QA)$$
.

Les manipulations élémentaires sur les lignes ou les colonnes représentant le produit à gauche ou à droite par des matrices inversibles, on en déduit un résultat jadis admis :

Corollaire 11.1:

Toute opération élémentaire sur les lignes ou les colonnes d'une matrice en préserve le rang.

$$\forall\,\mathbf{A},\mathbf{B}\in\mathscr{M}_{n,p}(\mathbb{K}),\qquad\mathbf{A}\sim_{\mathcal{L}}\mathbf{B}\;\;\mathrm{ou}\;\;\mathbf{A}\sim_{\mathcal{C}}\mathbf{B}\;\Longrightarrow\;\mathrm{rg}\,(\mathbf{A})=\mathrm{rg}\,(\mathbf{B}).$$

Autrement dit, le rang d'une matrice est invariant lorsqu'on effectue des opérations élémentaires sur les lignes et les colonnes. Deux matrices équivalentes par lignes ou par colonnes ont donc le même rang.

En pratique, on se contente souvent de mélanger opérations sur les lignes et les colonnes jusqu'à obtenir une matrice dont le rang est évident.

Théorème 12 (Rang de la transposée) :

Soit $A \in \mathscr{M}_{n,n}(\mathbb{K})$. On a :

$$\operatorname{rg}(A^{T}) = \operatorname{rg}(A).$$

Preuve : Par l'algorithme du pivot de Gauss, on sait que A est équivalente par lignes à une unique matrice échelonnée réduite par lignes J_r de la forme :

$$\mathbf{J}_r = \begin{pmatrix} \mathbf{I}_r & \mathbf{0}_{r,p-r} \\ \mathbf{0}_{p-r,r} & \mathbf{0}_{p-r,p-r} \end{pmatrix}.$$

On a donc $A = PJ_r$, où P est un produit de matrices de transformations élémentaires, donc inversible.

Donc
$$A^T = (PJ_r)^T = J_r^T P^T = J_r P^T$$
.

La matrice P^{T} restant inversible, on obtient donc le résultat voulu : $rg(A^{T}) = rg(J_{r}) = rg(A)$.

On obtient alors l'homologue du corollaire (8.2) :

Corollaire 12.1:

Le rang d'une matrice est égal au rang de la famille formée de ses vecteurs lignes.

Exemple 19 : Revenons sur la matrice de Vandermonde de l'exemple (10) :

$$\mathbf{M}(a_0,\dots,a_n) = \begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \cdots & a_n^n \end{pmatrix}.$$

On a montré à l'exemple (10) qu'elle était inversible si les a_i étaient deux à deux distincts. Montrons la réciproque.

En effet, s'il existe deux indices distincts i et j de [0; n] tels que $a_i = a_j$ alors les lignes L_i et L_j sont identiques et $\operatorname{rg}(A) \leqslant n < n+1$.

En particulier $\mathcal{M}(a_0,\dots,a_n)$ n'est pas inversible.

Par la contraposée on a donc montré que si $M(a_0, ..., a_n)$ est inversible alors $a_0, a_1, ..., a_n$ sont deux à deux distincts. C'est donc une équivalence.

Remarque: Nous verrons au prochain chapitre d'algèbre linéaire comment retrouver ce résultat d'une autre manière.

Exercice 13: On pose
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 8 \\ 1 & 1 & 1 \end{pmatrix}$$
.

À l'aide d'opérations élémentaires sur les lignes de A, montrer que $\ker(A) = \operatorname{vect}\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ et

$$\operatorname{Im}(A) = \operatorname{vect}\left(\begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\1 \end{pmatrix}\right).$$

Correction:

Noyau : Pour varier les plaisirs, calculons $\ker{(A)}$ matriciellement par des opérations élémentaires sur les LIGNES de A. Plutôt que des opérations sur les lignes d'un système linéaire homogène, pourquoi ne pas faire les mêmes opérations directement sur A?

C'est facile:

$$\ker\left(\mathbf{A}\right) = \ker\left(\frac{1}{2} \frac{2}{-1} \frac{-1}{8}\right) = \ker\left(\frac{1}{0} \frac{2}{5} \frac{-1}{-10}\right) = \underbrace{\ker\left(\frac{1}{0} \frac{2}{5} \frac{-1}{-10}\right)}_{\mathbf{L}_{2} \leftarrow 2\mathbf{L}_{1} - \mathbf{L}_{2}} \ker\left(\frac{1}{0} \frac{2}{1} \frac{-1}{-2}\right)$$

$$= \underbrace{\ker\left(\frac{1}{0} \frac{0}{3}\right)}_{\mathbf{L}_{1} \leftarrow \mathbf{L}_{1} - 2\mathbf{L}_{2}} \ker\left(\frac{1}{0} \frac{0}{3} \frac{3}{0} \frac{1}{1} - 2\right) = \left\{(x, y, z) \in \mathbb{R}^{3} \mid x + 3z = 0 \text{ et } y - 2z = 0\right\}$$

$$= \left\{(-3z, 2z, z) \mid z \in \mathbb{R}\right\} = \operatorname{vect}\left((-3, 2, 1)\right).$$

 $\label{eq:Image:Image:Image:Im} \mbox{Im}\left(A\right) = \mathrm{vect}\left((1,2,1),(2,-1,1),(-1,8,1)\right) \mbox{ et } \dim \mathrm{Im}\left(A\right) = 3 - \dim \ker\left(A\right) = 2 \mbox{ d'après le théorème du rang.}$

La famille ((1,2,1),(2,-1,1)) étant libre, elle constitue ainsi une base de ${\rm Im}\,(A)$.

```
linéaire
       canoniquement associée à une matrice, 20
Base, 2
Humour, 17
Image
    d'un vecteur par un application linéaire, 9
    d'une matrice, 20, 22
Isomorphisme, 3
    entre \mathcal{L}(\mathbf{E},\mathbf{F}) et \mathcal{M}_{n,p}, 7
Matrice
    d'un famille de vecteurs, 3
    d'un vecteur, 2
    d'une application linéaire, 4
    d'une composée, 11
    de passage, 15
    de Vandermonde, 14, 26
    semblable, 19
    équivalente, 18, 25
Noyau
    d'une matrice, 20, 21
Opération
    élémentaire, 25
Polynôme
    de Lagrange, 14
Projecteur, 7, 12
Rang
    d'une matrice, 20
    de la transposée, 25
Relation
    d'équivalence, 18, 19
Symétrie, 7, 12
Théorème
    du rang, 23
Valeur
    propre, 19
Vecteur
    propre, 19
```

Application

NDEX