Matrices et applications linéaires

Exercice 1: Soient $\mathcal{B}=(e_1,e_2,e_3)$ et $\mathcal{C}=(f_1,f_2,f_3,f_4)$ les bases canoniques respectives de \mathbb{R}^3 et

Déterminer l'expression de l'application linéaire $f: \mathbb{R}^3 \longmapsto \mathbb{R}^4$ dont la matrice sur ces deux bases

$$\mathrm{Mat}_{\mathcal{B},\mathcal{C}}(f) = \begin{pmatrix} -3 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 2 & -1 \end{pmatrix}.$$

Exercice 2: Soient E est un K-e.v. de dimension 2, et $u \in \mathcal{L}(E)$ nilpotent d'indice 2 i.e. $u^2 = 0$ et $u \neq 0$.

Montrer qu'il existe une base de E dans laquelle la matrice de u est $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Exercice 3 : Déterminer la matrice relative aux bases canoniques des applications linéaires f suivantes:

1.
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x \cdot y) \longmapsto (x + y \cdot y - 2x \cdot -x + 2y)$$

$$4. \ f: \ \mathbb{K}_n[\mathbf{X}] \ \longrightarrow \ \mathbb{K}_n[\mathbf{X}]$$

$$(x\,;y) \ \longmapsto \ (x+y\,;y-2x\,;-x+2y) \qquad \qquad \mathrm{P} \quad \longmapsto \ (\mathrm{X}^2-1)\mathrm{P}'-n\mathrm{X}\mathrm{P}$$

$$2. \ f: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$$

$$(x;y) \longmapsto (x,x+y,x-y,y)$$

$$5. \ f: \mathbb{C}_3[\mathbf{X}] \longrightarrow \mathbb{C}_3[\mathbf{X}]$$

$$P \longmapsto \mathbf{P}(\mathbf{X}+\mathbf{Y})$$

$$3. f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$$

$$P \longmapsto P(X+1)$$

Exercice 4: On donne l'endomorphisme $f:(x,y) \mapsto (-13x+6y,-9x+8y)$ de \mathbb{R}^2 .

- 1. Déterminer sa matrice dans la base canonique \mathcal{B} .
- 2. Soient u = (1,3) et v = (2,1).

Vérifier que $\mathcal{B}' = (u, v)$ est une base de \mathbb{R}^2 .

3. Déterminer Mat $_{\mathcal{B}'}(f)$.

Exercice 5 : Soit
$$A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 1 & 2 \end{pmatrix}$$
.

On note \mathcal{B} la base canonique de \mathbb{R}^3 , \mathcal{C} celle de \mathbb{R}^2 et $f \in \mathcal{L}(\mathbb{R}^3; \mathbb{R}^2)$ tel que $A = \operatorname{Mat}_{\mathcal{B}, \mathcal{C}}(f)$.

- 1. Soit $u = (x; y; z) \in \mathbb{R}^3$. Déterminer f(u).
- 2. Déterminer $\ker(f)$ et $\operatorname{Im}(f)$.

Exercice 6 : Soit
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$$
.

On note \mathcal{B} la base canonique de \mathbb{R}^3 et $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $A = \operatorname{Mat}_{\mathcal{B}}(f)$.

- 1. Soit $u = (x; y; z) \in \mathbb{R}^3$. Déterminer f(u).
- 2. Déterminer $\ker(f)$ et $\operatorname{Im}(f)$.

Exercice 7 : E est un Kev de dimension finie non nulle n. Soit f un endomorphisme de E.

1. On suppose que f est nilpotent d'indice p $(p \in \mathbb{N}^*)$, c'est-à-dire :

$$f^p = 0 \text{ et } f^{p-1} \neq 0$$

Soit $x \in E$ tel que $f^{p-1}(x) \neq 0$.

Démontrer que $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre dans E.

En déduire que $p \leq n$.

2. On suppose désormais que p = n.

Démontrer qu'il existe une base \mathcal{B} de E dans laquelle :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \left(\begin{smallmatrix} 0 & & 0 \\ 1 & \ddots & \\ & \ddots & \ddots \\ 0 & & 1 & 0 \end{smallmatrix}\right)$$

Exercice 8 : Soit f et g les applications linéaires définies par :

- 1. Déterminer A et B les matrices respectives de f et g dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .
- 2. En déduire l'expression de $g \circ f$.

Lycée Jules Garnier

Exercice 9 : Soit φ l'application linéaire définie par :

$$\varphi: \quad \mathbb{R}_1[\mathbf{X}] \quad \longrightarrow \quad \mathbb{R}_1[\mathbf{X}]$$
$$a\mathbf{X} + b \quad \longmapsto \quad -a\mathbf{X} + b - 2a.$$

Montrer que φ est une symétrie et déterminer sa base et sa direction.

Exercice 10 : On considère $f \in \mathcal{L}(\mathbb{R}^2)$ définie par :

$$f: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$
$$(x;y) \quad \longmapsto \quad (4x+y;7x+2y)$$

- 1. Écrire la matrice M de f relative à la base canonique de \mathbb{R}^2 .
- 2. Calculer $\mathbf{M}^2-6\mathbf{M}+\mathbf{I}_2$ puis en déduire que f est un automorphisme de \mathbb{R}^2 .
- 3. Soit $u = (x; y) \in \mathbb{R}^2$. Déterminer $f^{-1}(u)$.

Exercice 11: Soit M =
$$\begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ 0 & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \begin{pmatrix} n \\ n \end{pmatrix} \end{pmatrix}$$

- 1. Déterminer l'endomorphisme φ de $\mathbb{K}_n[X]$ dont la matrice dans la base canonique $(1, X, X^2, \dots, X^n)$ est M.
- 2. Montrer que φ est un isomorphisme.
- 3. En déduire que M est inversible et déterminer M^{-1} .

Remarque : La matrice M étant une matrice triangulaire dont les coefficients diagonaux sont non nuls, l'inversibilité de M est assurée.

Exercice 12 : On se place dans le \mathbb{R} -ev \mathbb{R}^3 .

On note $\mathcal B$ la base canonique de $\mathbb R^3$ et $\mathcal B'=(\varepsilon_1\,;\varepsilon_2\,;\varepsilon_3)$ la famille définie par :

$$\varepsilon_1 = (1\,;0\,;0)\,,\ \varepsilon_2 = (1\,;2\,;3)\ \text{et}\ \varepsilon_3 = (2\,;1\,;2)\,.$$

- 1. Montrer que \mathcal{B}' est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de passage de \mathcal{B} à \mathcal{B}' .
- 3. Soit $u=(x;y;z)\in\mathbb{R}^3$. Déterminer les composantes de u dans la base \mathcal{B}' .

3

Exercice 13 : Déterminer la matrice de $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dans $(x\,;y) \longmapsto (5x+6y\,;-3x-4y)$ $\mathcal{B}'=((2\,;-1)\,;(1\,;-1)).$

Exercice 14 : On pose $v_1 = (1;0;0), v_2 = (1;1;0)$ et $v_3 = (1;2;3)$.

1. Montrer que $\mathcal{B} = (v_1; v_2; v_3)$ est une base de \mathbb{R}^3 .

On pose alors $\mathcal{F} = \mathrm{vect}\; (v_1\,; v_2)$ et $\mathcal{G} = \mathrm{vect}\, (v_3)$ de sorte que $\mathbb{R}^3 = \mathcal{F} \oplus \mathcal{G}$.

- 2. Soit s la symétrie par rapport à F parallèlement à G. Déterminer $\mathrm{Mat}_{\mathcal{B}}(s)$.
- 3. Déterminer la matrice de s dans la base canonique de \mathbb{R}^3 .
- 4. En déduire l'expression de s.

Exercice 15 : On considère l'endomorphisme de \mathbb{R}^3 défini par :

$$\begin{array}{cccc} u: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & (x\,;y\,;z) & \longmapsto & (10x-y-z\,;-6x+9y-3z\,;-2x-y+11z) \end{array}$$

- 1. Déterminer $\mathbf{A} = \mathrm{Mat}_{\mathcal{B}_c}(u)$, où \mathcal{B}_c est la base canonique de \mathbb{R}^3 .
- 2. Montrer que la famille $\mathcal{B} = ((1;3;1);(1;0;-2);(0;1;-1))$ est une base de \mathbb{R}^3 .

Déterminer $B = Mat_{\mathcal{B}}(u)$.

3. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 16 : On désigne par u, v, w les trois endomorphismes de $\mathbb{R}_n[\mathbf{X}]$ définis par :

$$u: \mathcal{P} \longmapsto \mathcal{P}(\mathcal{X}-1), \quad v: \mathcal{P} \longmapsto \mathcal{P}(\mathcal{X}+1) \quad \text{et} \quad w: \mathcal{P} \longmapsto \mathcal{P}'.$$

On rapporte $\mathbb{R}_n[\mathbf{X}]$ à sa base canonique $\mathcal{B}.$

- 1. Déterminer les matrices U, V, W de u, v, w dans la base $\mathcal{B}.$
- 2. Calculer U^p, V^p, W^p pour tout entier naturel p.
- 3. Montrer que U est inversible et donner U^{-1} .

Exercice 17 : Dans $\mathbb{R}_3[X]$ muni de sa base canonique $\mathcal{B},$ on considère :

$$Q_0 = 1 + X + X^2 + X^3$$
, $Q_1 = X + X^2 + X^3$, $Q_2 = X^2 + X^3$, et $Q_3 = X^3$.

- 1. Démontrer que $\mathcal{C} = (Q_0, Q_1, Q_2, Q_3)$ est une base de $\mathbb{R}_3[X]$.
- 2. Déterminer $P_{\mathcal{B}}^{\mathcal{C}}$ et $P_{\mathcal{C}}^{\mathcal{B}}$.
- 3. Soit $P = a + bX + cX^2 + dX^3$.

Déterminer les coordonnées de P dans la base \mathcal{C} .

Lycée Jules Garnier F. PUCCI

Exercice 18: On rapporte $E = \mathbb{R}^3$ à sa base canonique \mathcal{B} .

Soient la droite D = vect (1,2,1) et le plan $\Pi = \{(x,y,z) \in \mathbb{R}^3, x-2y+5z=0\}.$

- 1. Montrer que $E = D \oplus \Pi$.
- 2. Soit p la projection vectorielle sur Π parallèlement à D.

Écrire la matrice de p dans la base \mathcal{B} .

- 3. Écrire la matrice dans la base $\mathcal B$ de :
 - (a) la symétrie vectorielle par rapport à Π parallèlement à D;
 - (b) la projection sur D parallèlement à Π ;
 - (c) la symétrie vectorielle par rapport à D parallèlement à Π.

Exercice 19 : Dans $E = \mathbb{K}^4$ muni de sa base canonique, on définit :

- F = $\{(x, y, z, t) \in \mathbb{K}^4 / x = t = 0\}.$
- G = $\{(x, y, z, t) \in \mathbb{K}^4 / x + y = z + t = 0\}$
- 1. Montrer que F et G sont supplémentaires.
- 2. Écrire la matrice de la projection sur G parallèlement à F.

Exercice 20 : Soit f l'endomorphisme canoniquement associé à $A = \frac{1}{9} \begin{pmatrix} 8 & -2 & -2 \\ -2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$.

Montrer que f est un projecteur et déterminer ses éléments caractéristiques.

Exercice 21 : Montrer que $A = (\sin(i+j)) \in \mathcal{M}_n$ est de rang au plus 2.

Exercice 22 : Déterminer le rang des matrices suivantes :

1.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & -3 & -2 \\ -4 & 4 & 2 \end{pmatrix}.$$

2.
$$B = \begin{pmatrix} 3 & 4 & -1 & 4 \\ 1 & 2 & 3 & 3 \\ 2 & 3 & 2 & 3 \end{pmatrix}.$$

1.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & -3 & -2 \\ -4 & 4 & 2 \end{pmatrix}$$
. 2. $B = \begin{pmatrix} 3 & 4 & -1 & 4 \\ 1 & 2 & 3 & 3 \\ 2 & 3 & 2 & 3 \end{pmatrix}$. 3. $C = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 2 \\ 4 & 2 & 0 & 4 & 2 \\ 1 & 2 & 1 & 2 & 1 \end{pmatrix}$.

Exercice 23 : Pour $d \neq 0$, on considère l'équation différentielle $(H_{-\frac{1}{d}})$:

$$y''(x) - \frac{1}{d}xy'(x) + y(x) = 0,$$

d'inconnue une fonction réelle y définie, deux fois dérivables sur un intervalle ouvert de \mathbb{R} .

L'objectif de cet exercice est de prouver qu'il existe admet au moins une solution polynomiale non nulle à $(H_{-\frac{1}{2}})$.

On note $\mathbb{R}_d[X]$ l'espace vectoriel réel des polynômes de degré inférieur à d, et on considère l'application $h: \mathbb{R}_d[X] \to \mathbb{R}_d[X]$ définie par

$$\forall \mathbf{P} \in \mathbb{R}_d[\mathbf{X}], \quad h(\mathbf{P}) = \mathbf{P}^{\prime\prime} - \frac{1}{d}\mathbf{X}\mathbf{P}^\prime + \mathbf{P}.$$

- 1. Montrer que, pour tout $P \in \mathbb{R}_d[X]$, on a $\deg h(P) \leqslant d-1$.
- 2. Montrer que h est un endomorphisme de $\mathbb{R}_d[X]$.
- 3. Montrer que l'application linéaire h n'est pas surjective.
- 4. En déduire l'existence d'une solution polynomiale non nulle de l'équation différentielle homogène $\left(H_{-\frac{1}{2}}\right)$.

Exercice 24 : Soit $f: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$

$$P \quad \longmapsto \quad P(X) + P(X+1)$$

1. Montrer que f est un automorphisme de $\mathbb{R}[X]$.

Aide: Pour la surjectivité, on pourra chercher à se ramener à un problème en dimension finie.

2. Montrer qu'il existe un unique polynôme P_n tel que

$$P_n(X) + P_n(X+1) = 2X^n$$

Déterminer le degré et le coefficient dominant de P_n .

- 3. Établir que pour tout $n \in \mathbb{N}^*$, $P'_n = nP_{n-1}$.
- 4. En déduire une expression de $P_n(X)$ comme combinaison linéaire de $P_0(X-1), P_1(X-1), \cdots P_n(X-1)$.

O