Variables aléatoires

Variables aléatoires

On considère une urne contenant 4 boules blanches et 3 boules noires.

On tire successivement 2 boules.

On note \mathbb{X} la variable aléatoire définie par $\mathbb{X}=0$ si la première boule est noire et $\mathbb{X}=1$ si elle est blanche.

On définit Y de la même façon pour la deuxième boule.

On effectue les tirages avec remise.

1. Donner le support de \mathbb{X} et \mathbb{Y} .

$$\mathbb{X}(\Omega) = \mathbb{Y}(\Omega) = \{0, 1\}.$$

2. Calculer $P((\mathbb{X}=0) \cap (\mathbb{Y}=0))$.

Trois boules noires sur sept à chaque tirage donc $P((\mathbb{X}=0)\cap(\mathbb{Y}=0))=\frac{3}{7}\times\frac{3}{7}=\frac{9}{49}.$

3. Déterminer la loi de probabilité du couple (\mathbb{X}, \mathbb{Y}) .

La loi conjointe du couple (X,Y) est

	$(\mathbb{Y} = 0)$	$(\mathbb{Y}=1)$	Total
$(\mathbb{X}=0)$	$\frac{3}{7} \times \frac{3}{7} = \frac{9}{49}$	$\frac{3}{7} \times \frac{4}{7} = \frac{12}{49}$	$\frac{3}{7}$
$(\mathbb{X}=1)$	$\frac{4}{7} \times \frac{3}{7} = \frac{12}{49}$	$\frac{4}{7} \times \frac{4}{7} = \frac{16}{49}$	$\frac{4}{7}$
Total	$\frac{3}{7}$	$\frac{4}{7}$	1

4. En déduire P(X = 0).

$$P(\mathbb{X} = 0) = P((\mathbb{X} = 0) \cap (\mathbb{Y} = 0)) + P((\mathbb{X} = 0) \cap (\mathbb{Y} = 1)) = \frac{3}{7}.$$

5. Déterminer les lois marginales de \mathbb{X} et \mathbb{Y} .

x	0	1
$P(\mathbb{X} = x)$	$\frac{3}{7}$	$\frac{4}{7}$

e

$$\begin{array}{c|cccc} y & 0 & 1 \\ \hline P(\mathbb{Y} = x) & \frac{3}{7} & \frac{4}{7} \\ \end{array}$$

6. Calculer $P_{(\mathbb{X}=0)}(\mathbb{Y}=0)$.

$$P_{(\mathbb{X}=0)}(\mathbb{Y}=0) = \frac{P((\mathbb{X}=0)\cap(\mathbb{Y}=0))}{P(\mathbb{X}=0)} = \frac{\frac{9}{49}}{\frac{3}{7}} = \frac{3}{7}$$

1

7. Les variables aléatoires sont-elles indépendantes?

D'après la loi conjointe de la question (3), $\forall (x;y) \in \mathbb{X}(\Omega) \times \mathbb{Y}(\Omega)$, $P((\mathbb{X}=x) \cap (\mathbb{Y}=y)) = P(\mathbb{X}=x) \times P(\mathbb{Y}=y)$ donc les variables aléatoires \mathbb{X} et \mathbb{Y} sont indépendantes.

8. Calculer E(X).

$$E(\mathbb{X}) = 0 \times P(\mathbb{X} = 0) + 1 \times P(\mathbb{X} = 1) = \frac{4}{7}.$$

Variables aléatoires

On considère une urne contenant 4 boules blanches et 3 boules noires.

On tire successivement 2 boules.

On note \mathbb{X} la variable aléatoire définie par $\mathbb{X}=0$ si la première boule est noire et $\mathbb{X}=1$ si elle est blanche.

On définit Y de la même façon pour la deuxième boule.

On effectue les tirages sans remise.

1. Donner le support de \mathbb{X} et \mathbb{Y} .

$$\mathbb{X}(\Omega) = \mathbb{Y}(\Omega) = \{0, 1\}.$$

2. Calculer $P((X = 0) \cap (Y = 0))$.

Trois boules noires sur sept puis deux sur six donc $P((X = 0) \cap (Y = 0)) = \frac{3}{7} \times \frac{2}{6} = \frac{1}{7}$.

3. Déterminer la loi de probabilité du couple (\mathbb{X}, \mathbb{Y}) .

La loi conjointe du couple (\mathbb{X},\mathbb{Y}) est

	$(\mathbb{Y} = 0)$	$(\mathbb{Y}=1)$	Total
$(\mathbb{X}=0)$	$\frac{3}{7} \times \frac{2}{6} = \frac{1}{7}$	$\frac{3}{7} \times \frac{4}{6} = \frac{2}{7}$	$\frac{3}{7}$
$(\mathbb{X}=1)$	$\frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$	$\frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$	$\frac{4}{7}$
Total	$\frac{3}{7}$	$\frac{4}{7}$	1

4. En déduire P(X = 1).

$$P(\mathbb{X}=1)=P((\mathbb{X}=1)\cap(\mathbb{Y}=0))+P((\mathbb{X}=1)\cap(\mathbb{Y}=1))=\frac{4}{7}.$$

5. Déterminer les lois marginales de \mathbb{X} et \mathbb{Y} .

x	0	1
$\boxed{ P(\mathbb{X} = x) }$	$\frac{3}{7}$	$\frac{4}{7}$

e

$$\begin{array}{c|ccc} x & 0 & 1 \\ \hline P(\mathbb{Y} = x) & \frac{3}{7} & \frac{4}{7} \\ \end{array}$$

6. Calculer $P_{(\mathbb{X}=0)}(\mathbb{Y}=0)$.

$$P_{(\mathbb{X}=0)}(\mathbb{Y}=0) = \frac{P((\mathbb{X}=0)\cap(\mathbb{Y}=0))}{P(\mathbb{X}=0)} = \frac{\frac{1}{7}}{\frac{3}{7}} = \frac{1}{3}$$

7. Les variables aléatoires sont-elles indépendantes?

D'après la loi conjointe de la question (3), $P((\mathbb{X}=0)\cap(\mathbb{Y}=0))=\frac{1}{7}\neq\frac{9}{49}=P(\mathbb{X}=0)\times P(\mathbb{Y}=0)$ donc les variables aléatoires \mathbb{X} et \mathbb{Y} ne sont pas indépendantes.

Remarque : On a aussi, avec la question précédente, $P_{(\mathbb{X}=0)}(\mathbb{Y}=0) \neq P(\mathbb{Y}=0)$.

8. Calculer E(X).

$$\mathrm{E}(\mathbb{X}) = 0 \times \mathrm{P}(\mathbb{X} = 0) + 1 \times \mathrm{P}(\mathbb{X} = 1) = \frac{4}{7}.$$