Géométrie de l'espace

Géométrie de l'espace

I/ Repérage, produit scalaire, produit mixte _____

Exercice 1 : Soient A, B, C, D quatre points de l'espace tels que (AB) et (CD) sont sécantes en I.

Déterminer le lieu des points M vérifiant $\overrightarrow{MA} \wedge \overrightarrow{MB} = \overrightarrow{MC} \wedge \overrightarrow{MD}$.

Exercice 2 : (Questions indépendantes)

- 1. Soient $\vec{a}(2;3;-1)$ et $\vec{b}(1;4;-2)$. Calculer $\vec{a} \wedge \vec{b}$ et $(\vec{a}+\vec{b}) \wedge (\vec{a}-\vec{b})$.
- 2. Soient $\vec{a}(3;-1;2)$, $\vec{b}(2;1;-1)$ et $\vec{c}(1;-2;2)$.

Calculer $(\vec{a} \wedge \vec{b}) \wedge \vec{c}$ et $\vec{a} \wedge (\vec{b} \wedge \vec{c})$. Conclusion?

3. Déterminer un vecteur unitaire orthogonal à $\vec{a}(2;-6;-3)$ et $\vec{b}(4;3;-1)$.

Exercice 3: Soient $\vec{a}(1;1;2)$, $\vec{b}(3;2;2)$ et $\vec{c}(1;-1;m)$ où $m \in \mathbb{R}$.

Pour quelles valeurs de m les vecteurs \vec{a} , \vec{b} et \vec{c} sont-ils coplanaires?

Exercice 4 : Dans une base orthonormée directe, on considère $\vec{u}(1;0;\lambda)$, $\vec{v}(\mu;2;3)$ et $\vec{w}(0;1;1)$.

Déterminer une CNS sur λ et μ pour que \vec{u} , \vec{v} et \vec{w} soient coplanaires.

Exercice 5 : On se place dans $(O; \vec{i}; \vec{j}, \vec{k})$ un repère orthonormé de l'espace.

- 1. Soient $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ quatre vecteurs de l'espace.
 - (a) Montrer la formule du double produit vectoriel :

$$\vec{a} \wedge (\vec{b} \wedge \vec{c}) = (\vec{c} \cdot \vec{a})\vec{b} - (\vec{b} \cdot \vec{a})\vec{c}.$$

(b) Montrer que:

$$(\vec{a} \wedge \vec{b}) \wedge (\vec{c} \wedge \vec{d}) = [\vec{a}, \vec{c}, \vec{d}] \vec{b} - [\vec{b}, \vec{c}, \vec{d}] \vec{a} = [\vec{a}, \vec{b}, \vec{d}] \vec{c} - [\vec{a}, \vec{b}, \vec{c}] \vec{d}.$$

2. Soient \vec{u} , \vec{v} deux vecteurs de l'espace.

Calculer $(\vec{u} \cdot \vec{v})^2 + ||\vec{u} \wedge \vec{v}||^2$

II/ Droites et plans _____

Exercice 6 (Plan médiateur) : Soient A, B deux points distincts de \mathscr{E} et I le milieu du segment [AB].

Montrer que le lieu des points équidistants de A et B est le plan passant par I et orthogonal à (AB).

Ce plan est appelé plan médiateur du segment [AB].

Exercice 7 : Déterminer pour chacun des plans une équation cartésienne.

Soient A(1; 2; 0), B(-1; 3; 1), C(0, 0, 1) et
$$\vec{n} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
.

- 1. Le plan (ABC).
- 2. \mathcal{P} passant par l'origine et de vecteur normal \vec{n} .
- 3. Le plan médiateur de [AB].

Exercice 8 : Déterminer une représentation paramétrique de la droite d'intersection des plans suivants :

- 1. $(\mathscr{P}): x-3y+2z-5=0$ et $(\mathscr{P}'): 2x+y+7z-1=0$.
- 2. $(\mathscr{P}): x + y z = 0$ et $(\mathscr{P}'): 2x y z 1 = 0$.
- 3. $(\mathscr{P}): x+y+2z-3=0$ et $(\mathscr{P}'): -x+4y-5z+6=0$.
- 4. $(\mathscr{P}): x-2z-1=0$ et $(\mathscr{P}'): y-2z+4=0$.
- 5. $(\mathscr{P}): 2x y 2z 1 = 0$ et $(\mathscr{P}'): -x + 4y + z 3 = 0$.

Exercice 9: Déterminer l'intersection des plans (\mathcal{P}) , (\mathcal{Q}) et (\mathcal{R}) avec :

- 1. (\mathscr{P}) : 3x + 3y + z + 2 = 0, (\mathscr{Q}) : y + z 5 = 0 et (\mathscr{R}) : 2z 8 = 0.
- 2. $(\mathscr{P}): 4x + 3y + z + 2 = 0, (\mathscr{Q}): x + 2y + z 5 = 0 \text{ et } (\mathscr{R}): 3x + 5y + 2z 9 = 0.$

Exercice 10 : L'espace est muni d'un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$.

1. Déterminer un paramétrage puis un vecteur directeur de la droite $\mathcal D$ donnée par le système d'équations cartésiennes

$$\begin{cases} 2x + y - 4z = 6 \\ x - y + 3z = 2 \end{cases}$$

- 2. Déterminer un système d'équations cartésiennes et un système d'équations paramétriques de la droite \mathcal{D}' l'intersection des plans \mathcal{P} et \mathcal{P}' tels que :
 - \mathcal{P} passe par A(1, 1, 0) et est normal au vecteur $\vec{u}(1, 0, -2)$.
 - \mathcal{P}' passe par B(2,0,1) et est dirigé par les vecteurs $\vec{v}(2,2,2)$ et $\vec{w}(3,1,1)$.
- 3. Soit δ l'intersection des plans d'équations x-z-2=0 et y=z-1.

Géométrie de l'espace

 \mathcal{D}' et δ sont-elles coplanaires?

Exercice 11 : Soit $(\mathcal{D}) = A + \text{vect } \vec{u} \text{ où } A(0;1;2) \text{ et } \vec{u}(-1;1;1).$

Soit (\mathcal{P}) le plan passant par A (5;1;-2), dirigé par les vecteurs $\vec{v}(1;1;0)$ et $\vec{w}(3;4;-1)$.

- 1. Déterminer une représentation paramétrique de (\mathcal{D}) et de (\mathcal{P}) .
- 2. Déterminer une équation cartésienne de (\mathscr{P}) et un système d'équations cartésiennes de (\mathscr{D}) .
- 3. Montrer que (\mathcal{D}) et (\mathcal{P}) ne sont pas parallèles. Déterminer $(\mathcal{D}) \cap (\mathcal{P})$.

Exercice 12 : Soit $\lambda \in \mathbb{R}$. Donner une CNS sur λ pour que les droites (\mathcal{D}) et (\mathcal{D}_{λ}) d'équations respectives

$$(\mathscr{D}): \begin{cases} x-2z-1=0 \\ y-z-1=0 \end{cases} \qquad \text{et} \qquad (\mathscr{D}_{\lambda}): \begin{cases} x+y+z=2 \\ x-2y+2z=\lambda \end{cases}$$

soient coplanaires.

Dans ce cas, donner une équation du plan qui les contient.

Exercice 13 : Pour tout $\lambda \in \mathbb{R}$, on considère le plan $(P_{\lambda}) : 2\lambda x + (\lambda + 1)y - 3(\lambda - 1)z + 2\lambda + 4 = 0$.

Montrer que ces plans contiennent tous une même droite (\mathcal{D}) .

Exercice 14 : On considère le plan (\mathscr{P}) d'équation 3x + y - z - 2 = 0.

Déterminer les coordonnées du projeté orthogonal du point A(5;1;3) sur le plan (\mathscr{P}) .

Exercice 15 : Déterminer le projeté orthogonal de M (4;8;0) sur le plan $(\mathscr{P}): x+3y+2z=0$.

Exercice 16 : Soient A (0; 2; -1) et B (4; 4; 3).

Déterminer une équation cartésienne du plan médiateur de [AB].

Exercice 17 : On considère trois points de l'espace F (0;-1;1), G (2;-1;3) et H (4;-5;3) et un plan (\mathscr{P}) d'équation x-y+2z+3=0.

- 1. Déterminer les coordonnées des points P, Q et R, projetés orthogonaux respectifs des points F, G et H sur le plan P.
- 2. Calculer FG.FH et PQ.PR.
- 3. Peut-on dire que la projection orthogonale conserve les angles? Justifier.

Exercice 18 : Déterminer la distance du point M(-1;-1;2) :

- 1. Au plan (\mathscr{P}) : 5x 3y + z = 1.
- 2. À la droite $(\mathcal{P}) \cap (\mathcal{P}')$ où $(\mathcal{P}') : y + 3z = 3$.

III/ Sphères

Exercice 19 : Déterminer une équation cartésienne de la sphère dans chacun des cas suivants :

- 1. Sphère de centre $\Omega(-2;0;1)$ et de rayon 3.
- 2. Sphère de diamètre [AB] où A(1;-1;2) et B(0;2;-2).
- 3. Sphère passant par O, de centre A(-8;6;2).
- 4. Sphère passant par O, A (2;1;0), B (0;3;5) et C (4;0;4).
- 5. Sphère passant par A(2;3;5), B(1;1;2), C(3;-2;4) et dont le centre appartient au plan d'équation x+y+z=10.
- 6. Sphère tangente au plan d'équation cartésienne x + y + z = 6 et de centre $\Omega(3;4;5)$.

Exercice 20 : L'espace est muni d'un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$.

Déterminer une équation de la sphère de centre $\Omega(1,0,1)$ et tangente au plan $\mathcal P$ d'équation x+y+z-1=0.

Exercice 21 : L'espace est muni d'un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$.

Reconnaitre les deux courbes données, et déterminer leur intersection :

- 1. $S: x^2 + y^2 + z^2 2x + 4y 6z 11 = 0$ et P: x 2y + z 2 = 0.
- 2. $S': x^2 + y^2 + z^2 2x 3 = 0$ et Q: x + y 2z 2 = 0.
- 3. P: 5x 2y = 7 et P': -x + 3y z 1 = 0.
- 4. $S'': x^2 + y^2 + z^2 2x y + z 3 = 0$ et $\delta: \begin{cases} x = -1 + 2t \\ y = 2t \\ z = 1 3t \end{cases}$ $t \in \mathbb{R}$