
19. Suites définies par récurrence

On s’intéresse aux suites définies par

{u0 ∈ I
∀n ∈ N, un+1 = f (un)

où f désigne une fonction de I dans R.

? Dans le cas où f est une fonction affine de la forme x↦ ax+b, la relation de récurrence peut s’écrire
comme

∀n ∈ N, un+1 = aun+b

La suite est arithmético-géométrique (cela contient le cas d’une suite géométrique dans le cas où
b = 0 mais aussi le cas d’une suite arithmétique dans le cas où a = 1). On dispose d’une méthode pour
déterminer le terme général d’une telle suite et donc pour en effectuer une étude facilement.

L’objectif de ce chapitre est de comprendre les étapes qui permettent d’étudier le comportement des
suites récurrentes dans le cas général, par exemple, lorsque l’on ne sait pas déterminer le terme général.

1 Étude générale
1.1 Représentation graphique

Pour l’étude d’une suite récurrente un+1 = f (un), on peut commencer par représenter graphiquement
les premiers termes de la suite. Pour cela, on trace la courbe représentative de la fonction f ainsi que la
droite y = x sur un même graphe. On pourra chercher à déterminer les coordonnées du point d’intersection
de ces deux courbes en résolvant f (x) = x d’inconnue x ∈ R. On fait ensuite apparaître les premiers termes
de la suite récurrente. Les termes successifs apparaissent à la fois sur l’axe des abscisses et sur l’axe des
ordonnées, ce qui facilite le tracé (on obtient "un escalier" (cas d’une suite monotone) ou "un escargot" (suite
non monotone).

Exemple 1.1 Représenter graphiquement la suite (un)n∈N définie par

{u0 = −
1
2

∀n ∈ N, un+1 =
√

1+un

Conjecturer la convergence de la suite (un)n∈N.

x

y

−1 0 1 2 3
0

1

2
y = x y =

√
1+ x
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1.2 Justifier qu’une suite récurrente est bien définie : l’intervalle de stabilité
Lorsqu’une suite est définie par récurrence, il peut y avoir un problème de définition quand la fonction

f n’est pas définie sur R. En effet, il se pourrait qu’à partir d’un certain rang, un n’appartienne plus à
l’ensemble de définition de f et dans ce cas, définir un+1 = f (un) n’est pas possible !

Exemple 1.2 Peut-on définir une suite (un)n∈N par

{u0 = −3
∀n ∈ N, un+1 =

√
1−un
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Proposition 1.3 Soit f une fonction définie sur R. Alors, la suite (un)n∈N définie par

{u0 ∈ I
∀n ∈ N, un+1 = f (un)

est bien définie (tous les termes de la suite existent).

Exemple 1.4 Parmi les suites définies par récurrence suivantes, dire lesquelles sont immédiatement bien
définies.

{u0 = 0
∀n ∈ N, un+1 =

√
un+1

a) {u0 = 1
∀n ∈ N, un+1 = u2

n+1
b)

{u0 = 1
∀n ∈ N, un+1 = ln(un)

c) {u0 = 1
∀n ∈ N, un+1 = exp(un)+1

d)

Définition 1.5 Un intervalle I de R est dit stable par f si, pour tout x ∈ I, f (x) ∈ I. Autrement dit,
f (I) ⊂ I.

Exemple 1.6 Dire si les intervalles suivants sont stables pour la fonction donnée.

Fonction Intervalle Inégalité vérifiée? Résultat

x↦ x+1 [0,1]

x↦ x2 [0,1]

x↦
√

x+1 [−1,+∞[

Exemple 1.7 Déterminer graphiquement si les intervalles suivants sont stables par la fonction carrée.

I1 = [0,1]a) I2 = [−1,0]b) I3 = [−1,2]c)
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Proposition 1.8 Soit f ∶ I→ R. Si

l’intervalle I est stable par f(H1) u0 est un réel dans I(H2)

alors, la suite (un)n∈N définie par

{u0 ∈ I
∀n ∈ N, un+1 = f (un)

est bien définie (tous les termes de la suite existent).

Dans les faits, on n’utilisera pas directement cette proposition (qui n’est pas au programme) mais on l’a
redémontrera systématiquement grâce à un raisonnement par récurrence.

Exemple 1.9 Justifier l’existence de la suite (un)n∈N définie par

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u0 =
1
4

∀n ∈ N, un+1 =
√

1−un

M. BOURNISSOU 4/10



1.3 Étude de la monotonie

? Méthode 1 - Déterminer la monotonie grâce au signe de x↦ f (x)− x
À On montre que I stable par f avec u0 ∈ I. (Et donc, pour tout n ∈ N, un ∈ I)
Á • Si pour tout x ∈ I, f (x)− x ≥ 0 alors, pour tout n ∈ N, un+1−un = f (un)−un ≥ 0 et donc

la suite est croissante.
• Si pour tout x ∈ I, f (x)− x ≤ 0 alors, pour tout n ∈ N, un+1−un = f (un)−un ≤ 0 et donc

la suite est décroissante.

Exemple 1.10 Étudier la monotonie de la suite définie par

{u0 = 2
∀n ∈ N, un+1 = u2

n

M. BOURNISSOU 5/10



? Méthode 2 - Déterminer la monotonie grâce à la monotonie de f

Si f est croissante, on peut montrer par récurrence que (un)n∈N est monotone. Plus précisément :
• si u0 ≤ u1 alors on montre par récurrence que pour tout n ∈ N, un+1 ≥ un, et donc (un)n∈N est

croissante.
• si u0 ≥ u1 alors on montre par récurrence que pour tout n ∈ N, un+1 ≤ un, et donc (un)n∈N est

décroissante.

! La méthode précédente ne fonctionne pas si la fonction f est décroissante à cause de l’alternance du
sens des inégalités. En effet, si u0 ≤ u1, alors après

u1 ≥ u2 puis u2 ≤ u3 . . .

et la suite «oscille».

Exemple 1.11 Étudier la monotonie de la suite définie par

{u0 = 1
∀n ∈ N, un+1 =

√
3x+6
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2 Détermination de limites
2.1 Suite au théorème de la limite monotone

On peut montrer qu’une suite converge en utilisant le théorème de la limite monotone (voir chapitre 13).
Dans ce cas, on sait que la suite admet une limite finie et il reste à déterminer sa valeur. On peut alors utiliser
le théorème suivant.

Proposition 2.1 Soient I un intervalle et f ∶ I⟶R une fonction. On suppose I stable par f . Soit (un)n∈N
la suite définie par u0 ∈ I et pour tout n ∈ N, un+1 = f (un). Soit ` ∈ I. Si (un)n∈N converge vers ` et f est
continue en ` alors f (`) = `.

La valeur de la limite s’obtient donc en résolvant une équation. On obtient cette équation en laissant
tendre n vers +∞ dans la relation de récurrence.

? Méthode 3 - Étudier la convergence grâce au théorème de la limite monotone
On peut étudier la convergence d’une suite définie par récurrence, on peut

• commencer par montrer qu’elle converge vers une limite finie ` ∈ R grâce au théorème de la
limite monotone

• puis déterminer la valeur de la limite en passant à la limite dans la relation de récurrence et en
résolvant l’équation obtenue.

Exemple 2.2 Étudier la convergence de la suite (un)n∈N définie par

{
u0 = 1
∀n ∈ N, un+1 =

un

1+u2
n
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2.2 En utilisant l’inégalité des accroissements finis

Proposition 2.3 — Inégalité des accroissements finis. Soit f ∶ I→ R. On suppose que
À La fonction f est dérivable sur I.
Á Il existe k ⩾ 0 tel que pour tout x ∈ I, on a ∣ f ′(x)∣ ⩽ k.

Alors,
∀(a,b) ∈ I2

, ∣ f (b)− f (a)∣ ⩽ k∣b−a∣.

? Ce théorème quantifie le fait que si la dérivée d’une fonction est bornée, cela limite l’amplitude de
ses variations.

Exemple 2.4 Montrer que,

∀a,b ∈ R, ∣sin(a)− sin(b)∣ ≤ ∣a−b∣

? Méthode 4 - Étudier la convergence grâce à l’IAF
L’étude d’une suite récurrente est une application fréquente de l’inégalité des accroissements finis.
Plus précisément, l’étude d’une suite définie par, pour tout n ∈ N, un+1 = f (un) se fait en général selon
les étapes suivantes.

1. On trouve un intervalle I stable par f (c-à-d pour tout x ∈ I, f (x) ∈ I).
2. Alors, si u0 ∈ I, on montre par récurrence que pour tout n ∈ N, un ∈ I.
3. On trouve un point fixe de f , c’est-à-dire un réel ` vérifiant f (`) = `.
4. On trouve un réel k ⩾ 0 tel que pour tout x ∈ I, ∣ f ′(x)∣ ⩽ k.
5. En appliquant l’IAF, on obtient que pour tout n ∈ N, ∣un+1− `∣ ⩽ k∣un− `∣.
6. Par récurrence, on montre alors que pour tout n ∈ N, ∣un− `∣ ⩽ kn∣u0− `∣.
7. Si 0 < k < 1, en laissant tendre n vers +∞ dans l’inégalité précédente, on en déduit que la suite

converge vers `.
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Exemple 2.5 — Étude d’une suite définie par récurrence à l’aide de l’IAF. (¤)
On considère la fonction

f ∶ [−2,+∞[ ⟶ R
x ⟼

√
x+2

On considère également la suite (un)n∈N définie par

u0 = 0 et ∀n ∈ N, un+1 = f (un).

Montrer que la suite (un)n∈N converge vers un réel ` à déterminer grâce à la méthode précédente.
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