
TD 19 – Suites Récurrentes (Correction)

1 Intervalle de stabilité

Exercice 1 – Soit (un)n∈N la suite définie par u0 =
1
2 et,

∀n ∈ N, un+1 =
un +1
un +2

On définit, pour tout x ∈ R\{−2}, f (x) = x+1
x+2 .

1. Montrer que l’intervalle ]0,1[ est stable par f .

Soit x ∈]0,1[ . Montrons que f (x) ∈]0,1[. D’une part, on a

0 < x < 1
donc 1 < x+1 < 2

D’autre part,

0 < x < 1
donc 2 < x+2 < 3

donc
1
3
<

1
x+2

<
1
2

car x 7→ 1
x

strictement décroissante sur ]0,+∞[

En multipliant les deux inégalités obtenues, on a,

1
3
<

x+1
x+2

< 1

et donc en particulier,

0 <
x+1
x+2

< 1

c’est-à-dire
0 < f (x)< 1

2. Montrer par récurrence que, pour tout n ∈ N, un existe et un ∈]0,1[.
On note, pour tout n ∈ N, (Pn) la propriété « un existe et un ∈]0,1[. »
• Initialisation: D’après l’énoncé, u0 =

1
2 ∈]0,1[. D’où (P0) vraie.

• Hérédité: On suppose que (Pn) est vraie pour un certain n ∈ N. Montrons que (Pn+1)
est vraie. D’après l’hypothèse de récurrence, un existe et un ∈]0,1[. En particulier,
un 6= −2. Or, la fonction f est définie sur R\{−2}. Donc, un+1 = f (un) existe. De
plus, comme un ∈]0,1[, par stabilité de l’intervalle ]0,1[ par f , un+1 = f (un) ∈]0,1[.
Donc (Pn+1) est vraie.

• Conclusion: Par le principe de récurrence, pour tout n ∈ N, un existe et un ∈]0,1[.
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Exercice 2 – Soit (un)n∈N la suite définie par u0 = 1 et,

∀n ∈ N, un+1 =
un

2
+

u2
n

4

On définit, pour tout x ∈ R, f (x) = x
2 +

x2

4 .
1. Montrer que l’intervalle ]0,1] est stable par f .

Soit x ∈]0,1] . Montrons que f (x) ∈]0,1]. D’une part, on a

0 < x≤ 1

donc 0 <
x
2
≤ 1

2
car

1
2
> 0

D’autre part,

0 < x≤ 1

donc 0 < x2 ≤ 1 car x 7→ x2 strictement croissante sur [0,+∞[

donc 0 <
x2

2
≤ 1

2
car

1
2
> 0

En additionnant les deux inégalités obtenues, on a,

0 <
x
2
+

x2

2
≤ 1

c’est-à-dire
0 < f (x)≤ 1

2. Montrer par récurrence que, pour tout n ∈ N, un ∈]0,1].
On note, pour tout n ∈ N, (Pn) la propriété « un ∈]0,1]. »
• Initialisation: D’après l’énoncé, u0 = 1 ∈]0,1]. D’où (P0) vraie.
• Hérédité: On suppose que (Pn) est vraie pour un certain n ∈ N. Montrons que
(Pn+1) est vraie. D’après l’hypothèse de récurrence, un ∈]0,1], donc par stabilité de
l’intervalle ]0,1] par f , un+1 = f (un) ∈]0,1]. Donc (Pn+1) est vraie.

• Conclusion: Par le principe de récurrence, pour tout n ∈ N, un ∈]0,1].
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2 Étude de la monotonie

Exercice 3 – Avec la Méthode 1. On considère la suite (un)n∈N définie par

u0 =
3
2

et ∀n ∈ N, un+1 = u2
n−2un +2

On définit, pour tout x ∈ R, f (x) = x2−2x+2.
1. (a) Montrer que, pour tout n ∈ N, un+1 = (un−1)2 +1.

Soit n ∈ N. En développant l’identité remarquable puis en utilisant la relation de
récurrence, on a,

(un−1)2 +1 = u2
n−2un +1+1 = u2

n−2un +2 = un+1

(b) À l’aide de la question précédente, montrer par récurrence que,

∀n ∈ N, un ∈ [1,2]

Montrons par récurrence que, pour tout n ∈ N, la propriété

P(n) "un ∈ [1,2]"

est vraie.
• Initialisation. Montrons que P(0) est vraie. D’après l’énoncé, u0 = 3/2 ∈ [1,2].

Donc P(0) est vraie.
• Hérédité.

On suppose que P(n) est vraie pour un certain n ∈ N, c’est-à-dire on suppose
que

un ∈ [1,2]

Montrons que P(n+1) est vraie, c’est-à-dire, montrons que

un+1 ∈ [1,2]

D’après la question précédente, on a

un+1 = (un−1)2 +1

Or, d’après l’hypothèse de récurrence, on a

1≤ un ≤ 2
donc 0≤ un−1≤ 1
donc 0≤ (un−1)2 ≤ 1 car la fct x 7→ x2 est croissante sur [0,+∞[
donc 1≤ (un−1)2 +1≤ 2
c-a-d 1≤ un+1 ≤ 2 d’après la question précédente

Donc P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a montré que pour tout n ∈ N, P(n)

est vraie, c’est-à-dire
∀n ∈ N, un ∈ [1,2].

2. (a) Dresser le tableau de signe de la fonction x 7→ f (x)− x.
Tout d’abord,

∀x ∈ R, f (x)− x = x2−2x+2− x = x2−3x+2 = (x−2)(x−1)

On en déduit ainsi le tableau de signe de x 7→ f (x)− x.
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x

f (x)− x

−∞ 1 2 +∞

+ 0 − 0 +

(b) En déduire que la suite (un)n∈N est décroissante.
On sait que

∀x ∈ [1,2], f (x)− x≤ 0a) ∀n ∈ N,un ∈ [1,2]b)
Donc, on en déduit que

∀n ∈ N, un+1−un = f (un)−un ≤ 0

La suite (un)n∈N est décroissante.
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Exercice 4 – Avec la Méthode 2. On considère la suite (un)n∈N définie par

u0 = 0 et ∀n ∈ N, un+1 = exp(un)

On définit, pour tout x ∈ R, f (x) = exp(x). Démontrer par récurrence que pour tout n ∈ N, un ≤ un+1.

Montrons par récurrence que la suite (un)n∈N est croissante. On note, pour tout n ∈ N, (Pn) la
propriété « un ≤ un+1. »

• Initialisation: D’après l’énoncé, u0 = 0 et on peut calculer grâce à la relation de récurrence
que u1 = exp(u0) = exp(0) = 1. Donc u0 ≤ u1. D’où (P0) vraie.

• Hérédité: On suppose que (Pn) est vraie pour un certain n ∈ N. Montrons que (Pn+1) est
vraie. D’après l’hypothèse de récurrence, on sait que

un ≤ un+1

Or, la fonction f est croissante sur R (propriété sur la fonction exponentielle) Donc,

f (un)≤ f (un+1)

c’est-à-dire
un+1 ≤ un+2

Donc (Pn+1) est vraie.
• Conclusion: Par le principe de récurrence, pour tout n ∈ N, un ≤ un+1. La suite (un)n∈N

est donc croissante.
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3 Convergence grâce au théorème de la limite monotone [Méthode 3]

Exercice 5 – Convergence vers une limite finie. Soit (un)n∈N la suite définie par u0 = 1 et, pour tout
n ∈ N, un+1 =

√
1+un.

1. Monter que ϕ = 1
2 +

√
5

2 (≈ 1.6) est un point fixe de la fonction f : x 7→
√

1+ x.

Comme ϕ ≥ 0, √
ϕ +1 = ϕ ⇐⇒ ϕ +1 = ϕ

2

Puis, on montre que
ϕ

2 = ϕ +1

...

2. Montrer que la suite (un)n∈N est bien définie et que, pour tout n ∈ N, un ∈ [1,ϕ].

Montrons par récurrence que, pour tout n ∈ N, la propriété

P(n) "un existe et un ∈ [1,ϕ]"

est vraie.
• Initialisation. Montrons que P(0) est vraie. D’après l’énoncé, u0 = 1 ∈ [1,ϕ]. Donc

P(0) est vraie.
• Hérédité.

On suppose que P(n) est vraie pour un certain n ∈N, c’est-à-dire on suppose que

un existe et un ∈ [1,ϕ]

Montrons que P(n+1) est vraie, c’est-à-dire, montrons que

un+1 existe et un ∈ [1,ϕ]

D’après l’hypothèse de récurrence, un ∈ [1,ϕ]. En particulier, un ≥−1. Or la fonction
f : x 7→

√
1+ x est définie sur [−1,+∞[. Donc la quantité f (un) est bien définie,

c’est-à-dire un+1 existe. De plus, en utilisant à nouveau l’hypothèse de récurrence, on
a

1≤ un ≤ ϕ

donc 2≤ un +1≤ ϕ +1
donc

√
2≤
√

un +1≤
√

ϕ +1 car la fct x 7→
√

x est croissante sur [0,+∞[

donc
√

2≤ un+1 ≤ ϕ

à fortiori 1≤ un+1 ≤ ϕ

Donc P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a montré que pour tout n ∈ N, P(n) est

vraie, c’est-à-dire
∀n ∈ N, un existe et un ∈ [ϕ,1]

3. Montrer que (un)n∈N est croissante.

En étudiant la fonction x 7→
√

1+ x−x, on peut montrer que son tableau de signe est donné
par

x

f (x)− x

−1 1
2 +

√
5

2
+∞

+ 0 −

Or, on sait que

∀x ∈ [ϕ,1], f (x)− x≥ 0a) ∀n ∈ N,un ∈ [ϕ,1]b)
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Donc, on en déduit que

∀n ∈ N, un+1−un = f (un)−un ≥ 0

La suite (un)n∈N est croissante.

4. En déduire que (un) converge vers un réel `.

D’après les questions précédentes, la suite (un) est... Donc, d’après le théorème de la
limite monotone, la suite (un) converge vers un réel `.

5. Déterminer la valeur de la limite `.

D’après la question précédente, la suite (un) converge vers un réel `. Or,

∀n ∈ N, un+1 =
√

1+un

Donc, en passant à la limite, on obtient que

`=
√

1+ `

c’est-à-dire (la résolution de cette équation a déjà été menée dans le cours)

`=
1+
√

5
2

Donc, la suite (un) converge vers 1+
√

5
2 .
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Exercice 6 – Divergence. Soit (un)n∈N la suite vérifiant u0 > 0 et,

∀n ∈ N, un+1 = un +
1
un

1. Montrer par récurrence que, pour tout n ∈ N, un > 0.

Montrons par récurrence que, pour tout n ∈ N, la propriété

P(n) "un > 0"

est vraie.
• Initialisation. Montrons que P(0) est vraie. D’après l’énoncé, u0 > 0. Donc P(0)

est vraie.
• Hérédité.

On suppose que P(n) est vraie pour un certain n ∈N, c’est-à-dire on suppose que

un > 0

Montrons que P(n+1) est vraie, c’est-à-dire, montrons que

un+1 > 0

D’après la question précédente, on a

un+1 = un +
1
un

Or, d’une part, d’après l’hypothèse de récurrence,

un > 0

et donc
1
un

> 0

(comme quotient de deux termes strictement positifs). Donc, en tant que somme de
deux termes strictement positifs,

un+1 = un +
1
un

> 0

Donc P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a montré que pour tout n ∈ N, P(n) est

vraie, c’est-à-dire
∀n ∈ N, un > 0

2. Montrer que la suite (un)n∈N est croissante.

On a, en utilisant la question précédente que

∀n ∈ N, un+1−un =
1
un

> 0

Donc, la suite (un)n∈N est croissante.

3. En déduire qu’il existe seulement deux comportements possibles pour la convergence de la suite.
4. Démontrer que la suite (un)n∈N est divergente vers +∞. On pourra raisonner par l’absurde.

Résolution des Questions 3 et 4 ensemble. D’après la question précédente, la suite (un)n∈N

est croissante. Donc, d’après le théorème de la convergence monotone,
• Soit la suite (un)n∈N admet une limite finie.
• Soit la suite (un)n∈N diverge vers +∞.

Supposons par l’absurde que la suite (un)n∈N admette une limite finie ` ∈ R.
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• Premier cas. Si ` 6= 0, comme,

∀n ∈ N, un+1 = un +
1
un

en passant à la limite, on obtient

`= `+
1
`

soit
0 =

1
`

ce qui est absurde.
• Deuxième cas. Si `= 0, comme la suite (un)n∈N est croissante

∀n ∈ N, un ≥ u0

et en passant à la limite, on obtient,

0≥ u0

Ce qui est absurde car l’énoncé indique que u0 > 0.
Ainsi, la suite (un)n∈N ne peut pas admettre une limite finie. Donc nécessairement, la suite
(un)n∈N diverge vers +∞.
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4 Étude grâce à l’IAF [Méthode 4]

Exercice 7 – On définit la suite (un)n∈N avec u0 = 1 et

∀n ∈ N, un+1 = un +
1
4
(2−u2

n)

On pose, pour tout x ∈ R, f (x) = x+ 1
4 (2− x2).

1. Montrer que, pour tout n ∈ N, un+1 = un(1− 1
4 un)+

1
2 .

2. Montrer que, pour tout n ∈ N, un ∈ [1,2].

Montrons par récurrence que, pour tout n ∈ N, la propriété

P(n) "un ∈ [1,2]"

est vraie.
• Initialisation. Montrons que P(0) est vraie. D’après l’énoncé, u0 = 1 ∈ [1,2]. Donc

P(0) est vraie.
• Hérédité.

On suppose que P(n) est vraie pour un certain n ∈N, c’est-à-dire on suppose que

un ∈ [1,2]

Montrons que P(n+1) est vraie, c’est-à-dire, montrons que

un+1 ∈ [1,2]

D’une part, d’après l’hypothèse de récurrence,

1≤ un ≤ 2

D’autre part, en utilisant de nouveau l’hypothèse de récurrence, on a
1≤ un ≤ 2

donc − 1
2 ≤−

1
4 un ≤− 1

4
donc 1

2 ≤ 1− 1
4 un ≤ 3

4

Donc, en multipliant les deux inégalités, on obtient,

1
2
≤ un(1−

1
4

un)≤
3
2

donc,

1≤ un(1−
1
4

un)+
1
2
≤ 2

c’est-à-dire
1≤ un+1 ≤ 2

Donc P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a montré que pour tout n ∈ N, P(n) est

vraie, c’est-à-dire
∀n ∈ N, un ∈ [1,2].

3. Déterminer les points fixes de la fonction f .

Soit x ∈ R. On a,

f (x) = x ⇐⇒ x+
1
4
(2− x2) = x ⇐⇒ 1

4
(2− x2) = 0 ⇐⇒ x =

√
2 ou x =−

√
2

La fonction f admet deux points fixes qui sont ±
√

2.

4. (a) Montrer que

∀x ∈ [1,2], | f ′(x)| ≤ 1
2
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Tout d’abord, la fonction f est dérivable sur R (en tant que fonction polynomiale) et sa
dérivée vaut

∀x ∈ R, f ′(x) = 1− 1
2

x

Soit x ∈ [1,2]. On a,

1≤ x≤ 2

donc
1
2
≤ 1

2
x≤ 1

donc −1≤−1
2

x≤−1
2

donc 0≤ 1− 1
2

x≤ 1
2

c-a-d 0≤ f ′(x)≤ 1
2

On obtient donc en particulier que la dérivée est positive et bornée par 1
2 sur [1,2] et

donc,

∀x ∈ [1,2], | f ′(x)|= f ′(x)≤ 1
2

(b) En déduire que

∀a,b ∈ [1,2], | f (b)− f (a)| ≤ 1
2
|b−a|

On applique l’inégalité des accroissements finis à la fonction f car
À La fonction f est dérivable sur [1,2].
Á Il existe k = 1

2 > 0 tel que pour tout x ∈ [1,2], on a | f ′(x)|6 k.
Donc,

∀(a,b) ∈ [1,2], | f (b)− f (a)|6 1
2
√

2
|b−a|.

(c) En déduire que

∀n ∈ N, |un+1−
√

2|6 1
2
|un−

√
2|.

Soit n ∈ N. En prenant b = un et a =
√

2 dans l’inégalité précédente (car un et
√

2
appartiennent à [1,2]), comme f (un) = un+1 (par construction) et f (

√
2) =

√
2 (cf

Question 2), on obtient

|un+1−
√

2|6 1
2
|un−

√
2|.

5. Montrer par récurrence que,

∀n ∈ N, |un−
√

2| ≤
(

1
2

)n

|1−
√

2|

Montrons par récurrence que pour tout n ∈ N, la propriété P(n) suivante est vraie

P(n) : « |un−
√

2| ≤
(

1
2

)n

|1−
√

2| ».

• Initialisation. Montrons que la propriété P(0) est vraie, c’est-à-dire que

|u0−
√

2| ≤
(

1
2

)0

|1−
√

2|

D’après l’énoncé, u0 = 1. Donc, la propriété P(0) est vraie.
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• Hérédité. Soit n ∈ N. On suppose que la propriété P(n) est vraie, c’est-à-dire que

|un−
√

2| ≤
(

1
2

)n

|1−
√

2|

On veut montrer que la propriété P(n+1) est vraie, c’est-à-dire que

|un+1−
√

2| ≤
(

1
2

)n+1

|1−
√

2|

D’après l’IAF, (Question 3(c)) on sait que

|un+1−
√

2|6 1
2
|un−

√
2|.

Donc, en utilisant l’hypothèse de récurrence, on a

|un+1−
√

2|6 1
2
×|un−2|

6
1
2
×
(

1
2

)n

|1−
√

2|

6

(
1
2

)n+1

|1−
√

2|

Donc la propriété P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a démontré que

∀n ∈ N, |un−
√

2| ≤
(

1
2

)n

|1−
√

2|

6. En déduire que (un)n∈N converge et donner sa limite.

On vient de démontrer que

∀n ∈ N, |un−
√

2| ≤
(

1
2

)n

|1−
√

2|

Or, par propriété sur les suites géométriques, on a

lim
n→+∞

2
(

1
2

)n

= 0 car −1 <
1
2
< 1.

Donc, par théorème des gendarmes, la suite (un)n∈N admet une limite et

lim
n→+∞

un = 2.

7. À partir de quel rang n a-t-on |un−
√

2| ≤ 10−9 ?

On a démontré que

∀n ∈ N, |un−
√

2| ≤
(

1
2

)n

|1−
√

2|

Donc, si
( 1

2

)n |1−
√

2| ≤ 10−9 alors à fortiori, |un−
√

2| ≤ 10−9. Or,(
1
2

)n

|1−
√

2| ≤ 10−9 ⇐⇒ n ln(
1
2
)+ ln(|1−

√
2|)≤ ln(10−9)

⇐⇒ n ln(
1
2
)≤ ln(10−9)− ln(|1−

√
2|)

⇐⇒ n≥ ln(10−9)− ln(|1−
√

2|)
ln( 1

2 )
car ln(

1
2
)< 0
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Donc, il suffit de prendre

n = b ln(10−9)− ln(|1−
√

2|)
ln( 1

2 )
c+1 = 29
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Exercice 8 – Avec un point fixe abstrait. On définit la suite (un)n∈N avec u0 = 0 et

∀n ∈ N, un+1 =
eun

eun +1
.

On pose, pour tout x ∈ R, f (x) = ex

ex+1 .
1. Montrer que, pour tout n ∈ N, un ∈ [0,1].

Il n’est pas nécessaire ici de se lancer dans une récurrence. Soit n ∈ N. D’une part, par
positivité de l’exponentielle,

eun > 0 et eun +1 > 0

Donc, comme quotient de deux termes strictement positifs,

un+1 =
eun

eun +1
> 0

De plus, on a aussi immédiatement,

eun ≤ eun +1

et donc,

un+1 =
eun

eun +1
≤ 1

Ainsi, on vient de démontrer que

∀n ∈ N, un+1 ∈ [0,1]

c’est-à-dire que la propriété est vraie pour u1,u2, .... Comme u0 = 0, la propriété est aussi
vraie au rang 0. Donc finalement,

∀n ∈ N, un ∈ [0,1]

2. (a) Soit g : R→ R définie par, pour tout x ∈ R, g(x) = f (x)− x. Montrer, grâce au théorème de la
bijection que g réalise une bijection de ]0,1[ vers un intervalle à déterminer.

• L’ensemble ]0,1[ est un intervalle.
• La fonction g est continue sur ]0,1[.
• La fonction g est dérivable sur ]0,1[ et

∀x ∈]0,1[, g′(x) = f ′(x)−1 =
ex

(ex +1)2 −1 =
−e2x− ex−1
(ex +1)2 < 0

Donc g est strictement décroissante sur ]0,1[.
Donc, d’après le théorème de la bijection, la fonction g réalise une

bijection de ]0,1[ vers ]
e

e+1
−1,

1
2
[

(car g(0) = 1
2 et g(1) = e

e+1 −1).
(b) En déduire qu’il existe un unique α ∈]0,1[ tel que

f (α) = α.

On admet que e
e+1 −1≈−0.26. On ne demande pas ici de déterminer la valeur de α .
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D’après la question précédente, la fonction g réalise une bijection de ]0,1[ vers ] e
e+1 −

1, 1
2 [, c’est-à-dire

∀y ∈] e
e+1

−1,
1
2
[, ∃!α ∈]0,1[, y = g(α).

Comme e
e+1 − 1 ≈ −0.26, on peut prendre en particulier y = 0 ∈] e

e+1 − 1, 1
2 [ et on

obtient,
∃!α ∈]0,1[, 0 = g(α).

c’est-à-dire
∃!α ∈]0,1[, α = f (α)

3. (a) Montrer que la dérivée de f est bornée sur [0,1].
Tout d’abord, la fonction f est dérivable sur [0,1] et sa dérivée est donnée par

∀x ∈ [0,1], f ′(x) =
ex

(ex +1)2

On remarque que la dérivée est positive sur [0,1] et donc

∀x ∈ [0,1], | f ′(x)|= f ′(x) =
ex

(ex +1)2

Soit x ∈ [0,1]. D’une part (estimation du dénominateur), on a,

0≤ x≤ 1
donc 1≤ ex ≤ e car x 7→ ex croissante sur R

donc 2≤ ex +1≤ e+1

donc
1

e+1
≤ 1

ex +1
≤ 1

2
car x 7→ 1

x
décroissante sur ]0,+∞[

donc
1

(e+1)2 ≤
1

(ex +1)2 ≤
1
4

car x 7→ x2 croissante sur [0,+∞[

D’autre part (estimation du numérateur), on a déjà démontré que

1≤ ex ≤ e

Donc, en multipliant les inégalités, on obtient

1
(e+1)2 ≤

ex

(ex +1)2 ≤
e
4

En particulier, on a montré que

∀x ∈ [0,1], | f ′(x)|= f ′(x) =
ex

(ex +1)2 ≤
e
4

La dérivée de f est bornée sur [0,1].

(b) En déduire que
∀a,b ∈ [0,1], | f (b)− f (a)| ≤ e

4
|b−a|

On applique l’inégalité des accroissements finis à la fonction f car
À La fonction f est dérivable sur [0,1].
Á Il existe k = e

4 > 0 tel que pour tout x ∈ [0,1], on a | f ′(x)|6 k.
Donc,

∀(a,b) ∈ [0,1], | f (b)− f (a)|6 e
4
|b−a|
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(c) En déduire que
∀n ∈ N, |un+1−α|6 e

4
|un−α|.

Soit n ∈ N. En prenant b = un et a = α dans l’inégalité précédente (car un et α appar-
tiennent à [0,1]), comme f (un) = un+1 (par construction) et f (α) = α (cf Question
2(b)), on obtient

|un+1−α|6 e
4
|un−α|

4. Montrer par récurrence que,

∀n ∈ N, |un−α| ≤
( e

4

)n
|u0−α|

Montrons par récurrence que pour tout n ∈ N, la propriété P(n) suivante est vraie

P(n) : « |un−α| ≤
( e

4

)n
|u0−α| ».

• Initialisation. Montrons que la propriété P(0) est vraie, c’est-à-dire que

|u0−α| ≤
( e

4

)0
|u0−α|

D’après l’énoncé, u0 = 0. Donc, la propriété P(0) est vraie.
• Hérédité. Soit n ∈ N. On suppose que la propriété P(n) est vraie, c’est-à-dire que

|un−α| ≤
( e

4

)n
|u0−α|

On veut montrer que la propriété P(n+1) est vraie, c’est-à-dire que

|un+1−α| ≤
( e

4

)n+1
|u0−α|

D’après l’IAF, (Question 3(c)) on sait que

|un+1−α|6 e
4
|un−α|.

Donc, en utilisant l’hypothèse de récurrence, on a

|un+1−α|6 e
4
×|un−α|

6
e
4
×
( e

4

)n
|u0−α|

6
( e

4

)n+1
|u0−α|

Donc la propriété P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a démontré que

∀n ∈ N, |un−α| ≤
( e

4

)n
|u0−α|

5. En déduire que (un)n∈N converge et donner sa limite.

On vient de démontrer que

∀n ∈ N, |un−α| ≤
( e

4

)n
|u0−α|

Or, par propriété sur les suites géométriques, on a

lim
n→+∞

2
( e

4

)n
= 0 car −1 <

e
4
< 1.

Donc, par théorème des gendarmes, la suite (un)n∈N admet une limite et

lim
n→+∞

un = α
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5 Approfondissement

Exercice 9 – Ecricome 2023, Maths E. On considère la fonction f définie sur ]0,+∞[ par :

∀x ∈]0,+∞[, f (x) =
e

x
2
√

x

On rappelle que 2 < e < 3.
1. (a) Montrer que f est dérivable sur ]0,+∞[ et que, pour tout réel x de ]0,+∞[ :

f ′(x) =
(x−1)

2x
f (x)

(b) Dresser le tableau de variations de f et déterminer les limites suivantes lim
x→0

f (x) et lim
x→+∞

f (x).

(c) Tracer l’allure de la courbe représentative de f .
(d) Montrer que, pour tout entier n supérieur ou égal à 2 , l’équation f (x) = n, d’inconnue x dans

]0,+∞[, possède exactement deux solutions un et vn, avec:

0 < un < 1 < vn.

2. (a) Montrer que la suite (vn)n>2 est croissante.
(b) Montrer par l’absurde que la suite (vn)n>2 tend vers +∞ quand n tend vers +∞.

3. (a) Montrer que la suite (un)n>2 est décroissante.
(b) En déduire que la suite (un)n>2 converge. Dans les questions qui suivent, on note ` la limite de

la suite (un)n>2.
(c) Montrer par l’absurde que `= 0.
(d) En déduire que limn→+∞ n2un = 1 puis un équivalent simple de un lorsque n tend vers +∞.
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Exercice 10 – Lorsque la fonction est décroissante.... On définit la suite (un)n∈N par u0 = 1 et

∀n ∈ N, un+1 = 1+
1
un

Soit I = [1,2]. Pour tout x ∈ I, on pose f (x) = 1+
1
x

et g = f ◦ f .

1. Démontrer que la suite (un)n∈N est bien définie et que pour tout n ∈ N, un ∈ I.

Montrons par récurrence que, pour tout n ∈ N, la propriété

P(n) "un existe et un ∈ I"

est vraie.
• Initialisation. Montrons que P(0) est vraie. D’après l’énoncé, u0 = 1 ∈ I. Donc

P(0) est vraie.
• Hérédité.

On suppose que P(n) est vraie pour un certain n ∈N, c’est-à-dire on suppose que

un existe et un ∈ I

Montrons que P(n+1) est vraie, c’est-à-dire, montrons que

un+1 existe et un ∈ I

D’après l’hypothèse de récurrence, un ∈ I. En particulier, un 6= 0. Or la fonction f
est définie sur R\{0}. Donc la quantité f (un) est bien définie, c’est-à-dire un+1 existe.
De plus, en utilisant à nouveau l’hypothèse de récurrence, on a

1≤ un ≤ 2
donc 1

2 ≤
1
un
≤ 1 car la fct x 7→ 1

x est décroissante sur ]0,+∞[

donc 3
2 ≤ 1+ 1

un
≤ 2

c-a-d 3
2 ≤ un+1 ≤ 2

a fortiori 1≤ un+1 ≤ 2

Donc P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a montré que pour tout n ∈ N, P(n) est

vraie, c’est-à-dire
∀n ∈ N, un existe et un ∈ I

2. Justifier que f est strictement décroissante sur I et que g est strictement croissante sur I.

• La fonction f est dérivable sur I et

∀x ∈ I, f ′(x) =− 1
x2 < 0

Donc la fonction f est strictement décroissante sur I.
• Tout d’abord,

∀x ∈ I, g(x) = f ( f (x)) = 1+
1

f (x)
= 1+

1
1+ 1

x

= 1+
x

x+1

Ainsi, la fonction g est dérivable sur I et

∀x ∈ I, g′(x) =
1

(x+1)2 ≥ 0

Donc la fonction f est strictement croissante sur I.

3. Vérifier que, pour tout n∈N, un+2 = g(un) et en déduire que les suites extraites (u2n)n∈N et (u2n+1)n∈N

sont convergentes. Préciser leurs limites.
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Soit n ∈ N. On peut commencer par remarquer que

g(un) = f ( f (un)) = f (un+1) = un+2

En posant, pour tout n ∈ N, vn = u2n, on obtient que la suite (vn)n∈N vérifie la relation de
récurrence

∀n ∈ N, vn+1 = g(vn).

• On sait que, pour tout n ∈ N, un ∈ I, donc en tant que suite extraite, on récupère que
pour tout n ∈ N, vn ∈ I. En particulier, la suite (vn)n∈N est majorée par 2.

• De plus, on peut calculer que v0 = u0 = 1 et v1 = u2 =
3
2 . Ainsi, v0 ≤ v1. Et la fonction

g est croissante sur I. On peut montrer par récurrence (voir par exemple Exercice 4)
que, pour tout n ∈ N, vn ≤ vn+1, c’est-à-dire la suite (vn)n∈N est croissante.

Ainsi, d’après le théorème de la limite monotone, la suite (vn)n∈N admet une limite finie
` ∈ R. Or,

∀n ∈ N, vn+1 = g(vn) = 1+
un

un +1

Donc, en passant à la limite, on obtient que

`= 1+
`

`+1

En résolvant l’équation, on en déduit que

`=
1
2
+

√
5

2
ou `=

1
2
−
√

5
2

Or, on sait que, pour tout n ∈ N, vn ∈ [1,2] et donc, en passant à la limite, ` ∈ [1,2]. Donc
nécessairement,

`=
1
2
+

√
5

2

Ainsi, la suite (vn)n∈N converge vers 1
2 +

√
5

2 , c’est-à-dire la suite (u2n)n∈N converge vers 1
2 +

√
5

2 .

On montre de même que la suite (u2n+1)n∈N converge vers la même limite.

4. Démontrer que la suite (un)n∈N est convergente et donner sa limite.

Les suites extraites (u2n)n∈N et (u2n+1)n∈N sont convergentes et admettent la même limite

qui est 1
2 +

√
5

2 . Ainsi, la suite (un)n∈N est converge aussi vers 1
2 +

√
5

2 .
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Exercice 11 – Suites définies de manière implicite. On considère la fonction f : R→ R définie par, pour
tout x ∈ R, f (x) = ex− x.

1. Dresser le tableau de variations de f .

On a,
∀x ∈ R, f ′(x) = ex−1

x

f ′(x)

f

−∞ 0 +∞

− 0 +

+∞+∞ 11 +∞+∞

2. En déduire que, pour tout n≥ 2, l’équation ex = x+n admet exactement deux solutions réelles xn et
yn telles que

xn < 0 < yn

Montrons que la fonction f réalise une bijection de ]−∞,0[ sur un intervalle à déterminer.
• L’ensemble ]−∞,0[ est un intervalle.
• La fonction g est continue sur ]−∞,0[.
• D’après le tableau de variations, la fonction f est strictement décroissante sur ]−

∞,0[.
Donc, d’après le théorème de la bijection, la fonction f réalise une

bijection de ]−∞,0[ vers ]1,+∞[

(car f (0) = 1 et lim
x→−∞

f (x) = +∞). En particulier,

∀y ∈]1,+∞[, ∃!x ∈]−∞,0[, y = f (x)

Soit n≥ 2. En prenant y = n ∈]1,+∞[, on obtient

∃!xn ∈]−∞,0[, n = f (xn)

autrement dit, l’équation ex− x = n admet une unique solution xn ∈]−∞,0[. De même, on
montre que la même équation admet une unique solution yn ∈]−∞,0[ en montrant que f
réalise cette fois-ci une bijection de ]0,+∞[ vers ]1,+∞[.

3. Montrer que la suite (xn)n≥2 est décroissante.

Soit n≥ 2. On sait que, par construction f (xn) = n et f (xn+1) = n+1. De plus, on sait que

n+1≥ n

c’est-à-dire
f (xn+1)≥ f (xn)

Or, xn et xn+1 sont dans ]−∞,0[ et la fonction f est décroissante sur ]−∞,0[, on en déduit
que

xn+1 ≤ xn

Ainsi, la suite (xn)n≥2 est décroissante.

4. En déduire, par un raisonnement par l’absurde, que la suite (xn)n≥2 diverge vers −∞.

D’après la question précédente, suite (xn)n≥2 est décroissante. Donc, d’après le théorème
de la limite monotone,
• soit la suite (xn)n≥2 admet une limite finie,
• soit la suite (xn)n≥2 diverge vers −∞.
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Supposons par l’absurde que la suite (xn)n≥2 admet une limite finie ` ∈ R. Or, on sait que

∀n ∈ N, f (xn) = n

Or,
lim

n→+∞
n =+∞ et lim

n→+∞
f (xn) = e`− `

par continuité de f sur R. Par unicité de la limite, ceci est absurde. Donc nécessairement,
la suite (xn)n≥2 diverge vers −∞.

5. Étudier de même la convergence de la suite (yn)n≥2

On peut montrer de même que la suite (yn)n≥2 est croissante et qu’elle ne peut pas admettre
de limite finie, donc nécessairement, d’après le théorème de la limite monotone, la suite
(yn)n≥2 diverge vers +∞.
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Exercice 12 – Ecricome 2022 Maths E. Pour tout réel x > 0, on pose :

g(x) = exp
((

2− 1
x

)
ln(x)

)

Partie I : Étude de la fonction g
1. Déterminer

lim
x→0+

g(x) et lim
x→+∞

g(x)

• Déterminons d’abord la limite de g en 0+. Tout d’abord, on sait que

lim
x→0+

1
x
=+∞ donc lim

x→0+
2− 1

x
=−∞

On sait également que
lim

x→0+
ln(x) =−∞

Donc, par produit,

lim
x→0+

(
2− 1

x

)
ln(x) = +∞.

Puis par composition,

lim
x→0+

g(x) = lim
x→0+

exp
((

2− 1
x

)
ln(x)

)
=+∞

• Déterminons ensuite la limite de g en +∞. Tout d’abord, on sait que

lim
x→+∞

1
x
= 0 donc lim

x→+∞
2− 1

x
= 2

On sait également que
lim

x→+∞
ln(x) = +∞

Donc, par produit,

lim
x→+∞

(
2− 1

x

)
ln(x) = +∞.

Puis par composition,

lim
x→+∞

g(x) = lim
x→+∞

exp
((

2− 1
x

)
ln(x)

)
=+∞

2. Soit h la fonction définie sur R∗+ par :

∀x > 0, h(x) = ln(x)+2x−1

(a) Démontrer que la fonction h est strictement croissante sur R∗+.
Tout d’abord, la fonction x 7→ ln(x) est dérivable sur R∗+ et la fonction x 7→ 2x−1 est
dérivable sur R donc à fortiori sur R∗+. Donc, par somme, la fonction h est dérivable sur
R∗+ et sa dérivée est donnée par,

∀x > 0, h′(x) =
1
x
+2

On obtient donc directement que

∀x > 0, h′(x)> 0.

Donc, la fonction h est strictement croissante sur R∗+.
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(b) Démontrer qu’il existe un unique réel α > 0 tel que h(α) = 0.

• La fonction h est définie sur l’intervalle ]0,+∞[.
• La fonction h est continue sur ]0,+∞[ (car dérivable sur ]0,+∞[ d’après la question

2(a)).
• La fonction h est dérivable sur ]0,+∞[ d’après la question 2(a).

Donc, d’après le théorème de la bijection, la fonction h réalise une bijection de ]0,+∞[
sur

] lim
x→0+

h(x), lim
x→+∞

h(x)[

Or, on peut calculer directement par somme que

lim
x→0+

h(x) =−∞ et lim
x→0+

h(x) = +∞

Donc, la fonction h réalise une bijection de ]0,+∞[ sur R. Or, 0 ∈ R.
Donc, il existe un unique α ∈]0,+∞[ tel que h(α) = 0.

(c) Justifier que 1
2 < α < 1.

Commençons par montrer que

h
(

1
2

)
< h(α)< h(1).

Grâce à l’expression de la fonction h, on peut calculer directement que

h
(

1
2

)
=− ln(2)< 0 h(1) = 1 > 0

Or, par construction faite à la question 2(b), h(α) = 0. Donc, on obtient bien que

h
(

1
2

)
< h(α)< h(1).

Puis, comme h est strictement croissante sur ]0,+∞[, on obtient que

1
2 < α < 1

(d) Démontrer que :

∀x > 0, g′(x) =
1
x2 h(x)g(x)

Tout d’abord, la fonction g est dérivable sur R∗+ par opérations de fonctions dérivables
sur R∗+ (en raisonnant comme à la question 2(a)). De plus, sa dérivée est donnée par,

∀x > 0, g′(x) =

(
1
x2 × ln(x)+

(
2− 1

x

)
1
x

)
exp
((

2− 1
x

)
ln(x)

)
=

1
x2 (ln(x)+2x−1)exp

((
2− 1

x

)
ln(x)

)
= 1

x2 h(x)g(x)

(e) En déduire les variations de la fonction g sur R∗+.
D’après la question 2(d), on a,

∀x > 0, g′(x) =
1
x2 h(x)g(x)
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Or,

∀x > 0,
1
x2 > 0 et ∀x > 0, g(x)> 0

Donc, pour tout x > 0, le signe de g′(x) est celui de h(x). Or, h est strictement croissante
sur ]0,+∞[ et h(α) = 0 (où α a été définie à la question 2(b)). Donc h est négative sur
]0,α[ et h est positive sur ]α,+∞[. On peut en déduire le tableau de signe de g′ et donc
le tableau de variations de g de la manière suivante.

x

g′(x)

g

0 α +∞

− 0 +

+∞+∞

g(α)g(α)

+∞+∞

Les limites présentes dans la tableau de variations de g ont été calculée à la question 1.
Le calcul de g(α) n’a pas été effectué. On en déduit que
• la fonction g est décroissante sur ]0,α[,

• et croissante sur ]α,+∞[.

Partie II : Étude d’une suite récurrente
Soit (un)n∈N la suite définie par son premier terme u0 > 0 et la relation de récurrence :

∀n ∈ N, un+1 = g(un).

3. Démontrer par récurrence que, pour tout entier naturel n, un existe et un > 0.

Montrons par récurrence que pour tout n ∈ N, la propriété P(n) suivante est vraie

P(n) : « un existe et un > 0 ».

• Initialisation. Montrons que la propriété P(0) est vraie, c’est-à-dire que

u0 existe et u0 > 0.

D’après l’énoncé, u0 > 0. Et donc, la propriété P(0) est vraie.
• Hérédité. Soit n ∈ N. On suppose que la propriété P(n) est vraie, c’est-à-dire que

un existe et un > 0

On veut montrer que la propriété P(n+1) est vraie, c’est-à-dire que

un+1 existe et un+1 > 0

D’après l’énoncé, on sait que
un+1 = g(un).

Or, un > 0 par hypothèse de récurrence donc g(un) (et donc un+1 est bien défini). De
plus, par propriété de l’exponentielle.

∀x > 0, g(x)> 0.

Donc, en prenant x = un dans cette inégalité (possible car un > 0), on obtient

un+1 = g(un)> 0.

Donc la propriété P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a démontré que

∀n ∈ N, un existe et un > 0
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4. (a) Étudier le signe de (x−1) ln(x) pour x > 0.
On peut dresser le tableau de signe suivant, en regardant le signe de chacun des termes
du produit.

x

x− 1

ln(x)

(x− 1) ln(x)

0 1 +∞

− 0 +

− 0 +

+ 0 +

De ce tableau de signe, on en déduit que

∀x > 0, (x−1) ln(x)> 0

et
(x−1) ln(x) = 0 ⇔ x = 1.

(b) Montrer que

∀x > 0,
g(x)

x
> 1.

On pourra utiliser que, pour tout x > 0, x = exp(ln(x)).
Soit x > 0. On a

g(x)
x

=
exp
((

2− 1
x

)
ln(x)

)
exp(ln(x))

= exp
((

2− 1
x

)
ln(x)− ln(x)

)
= exp

(
ln(x)− ln(x)

x

)
= exp

(
(x−1) ln(x)

x

)
Or, x > 0 et d’après la question 5(a), (x−1) ln(x)> 0. Donc

(x−1) ln(x)
x

> 0

et par croissance de l’exponentielle

exp
(
(x−1) ln(x)

x

)
> exp(0).

Finalement, on a bien montré que

∀x > 0, g(x)
x > 1.

(c) En déduire que pour tout réel > 0, on a g(x) > x et que l’équation g(x) = x admet 1 comme
unique solution.

D’après la question 5(b),

∀x > 0,
g(x)

x
> 1.
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Donc,
∀x > 0, g(x)> x,

car on a multiplié l’inégalité par une quantité positive. De plus, en reprenant les calculs
de la question 5(b), on a, pour tout réel x > 0,

g(x)
x = 1 ⇔ (x−1) ln(x)

x
= 0 ⇔ (x−1) ln(x) = 0 ⇔ x = 1,

en utilisant le résultat de la question 5(a). Donc l’équation g(x) = x admet une unique
solution donnée par x = 1.

5. Étudier les variations de la suite (un)n∈N.

D’après la question 5(c), on sait que

∀x > 0, g(x)> x.

Si on applique l’inégalité précédente à un pour tout n ∈ N (ce qui est possible car pour tout
n ∈ N, un > 0 d’après la question 3), on obtient

∀n ∈ N, g(un)> un,

c’est-à-dire d’après la construction de la suite (un)n∈N,

∀n ∈ N, un+1 > un.

Donc, la suite (un)n∈N est croissante.

6. Dans cette question uniquement, on suppose que u0 ∈
[ 1

2 ,1
]
.

(a) Démontrer que

∀n ∈ N, un ∈
[

1
2
,1
]

Montrons par récurrence que pour tout n ∈ N, la propriété P(n) suivante est vraie

P(n) : « un ∈
[

1
2
,1
]

».

• Initialisation. Montrons que la propriété P(0) est vraie, c’est-à-dire que

u0 ∈
[

1
2
,1
]

D’après l’énoncé, u0 ∈
[ 1

2 ,1
]
. Et donc, la propriété P(0) est vraie.

• Hérédité. Soit n ∈N. On suppose que la propriété P(n) est vraie, c’est-à-dire que

un ∈
[

1
2
,1
]

On veut montrer que la propriété P(n+1) est vraie, c’est-à-dire que

un+1 ∈
[

1
2
,1
]

Premièrement, d’après la question 6, la suite (un)n∈N est croissante donc

un+1 > un >
1
2
,

en utilisant l’hypothèse de récurrence. Deuxièmement, d’après l’énoncé,

un+1 = g(un) = exp
((

2− 1
un

)
ln(un)

)
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Or, par hypothèse de récurrence, un 6 1. Donc, par croissance du logarithme sur
]0,+∞[, on obtient

ln(un)6 ln(1) = 0

De plus, comme un > 1
2 , par décroissance de la fonction inverse sur ]0,+∞[, on en

déduit que

2− 1
un

> 0.

Donc, (
2− 1

un

)
ln(un)6 0.

Donc, par croissance de l’exponentielle sur R, on a

exp
((

2− 1
un

)
ln(un)

)
6 exp(0),

c’est-à-dire
un+1 6 1.

Donc la propriété P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a démontré que

∀n ∈ N, un ∈
[ 1

2 ,1
]

(b) En déduire que la suite (un)n∈N converge.
La suite (un)n∈N est croissante (question 6) et majorée par 1 (question 7(a)). Donc,
par le théorème de la convergence monotone, la suite (un)n∈N admet une limite réelle

` ∈
[ 1

2 ,1
]

(en passant à la limite dans l’inégalité de la question 7(a)).
(c) Déterminer la limite de la suite (un)n∈N.

On sait que
∀n ∈ N, g(un) = un+1

Or d’après la question 7(b), la suite (un)n∈N admet une limite `. Donc, en tant que suite
extraite,

lim
n→+∞

un+1 = `.

De plus, comme g est continue sur R∗+, on a aussi que

lim
n→+∞

g(un) = g(`).

Donc, par unicité de la limite,
g(`) = `.

Or, on a vu à la question 5(c), que l’équation g(x) = x admet une unique solution
donnée par x = 1. Donc, nécessairement,

`= 1,

c’est-à-dire la suite (un)n∈N converge vers 1.

7. Dans cette question uniquement, on suppose que u0 > 1.
(a) Démontrer que

∀n ∈ N, un > 1

Montrons par récurrence que pour tout n ∈ N, la propriété P(n) suivante est vraie
P(n) : « un > 1 ».

• Initialisation. Montrons que la propriété P(0) est vraie, c’est-à-dire que

u0 > 1

D’après l’énoncé, u0 > 1. Et donc, la propriété P(0) est vraie.
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• Hérédité. Soit n ∈N. On suppose que la propriété P(n) est vraie, c’est-à-dire que

un > 1

On veut montrer que la propriété P(n+1) est vraie, c’est-à-dire que

un+1 > 1

D’après l’énoncé,
un+1 = g(un)

Or, par hypothèse de récurrence,

un > 1.

Or d’après la question 2(e), la fonction g est strictement croissante sur ]α,+∞[ et
donc sur ]1,+∞[ car α < 1 d’après la question 2(c). Donc

g(un)> g(1),

c’est-à-dire
un+1 > 1.

Donc la propriété P(n+1) est vraie.
• Conclusion. Par principe de récurrence, on a démontré que

∀n ∈ N, un ∈
[ 1

2 ,1
]

(b) Démontrer que la suite (un)n∈N tend vers +∞.
D’après la question 6, la suite (un)n∈N est croissante. Donc, d’après le théorème de la
limite monotone,
• soit la suite est majorée et elle converge vers un réel `,
• soit la suite diverge vers +∞.

Or si la suite convergeait vers un réel `, alors en raisonnant comme à la question 7(c),
on obtiendrait que `= 1. Or, la suite étant croissante,

∀n ∈ N, un > u0

et donc en passant à la limite
`> u0 > 1

Ce qui est absurde. Donc finalement, la suite (un)n∈N diverge vers +∞.
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