TD 19 — Suites Récurrentes (Correction)

1 Intervalle de stabilité

Exercice 1 - Soit (uy)nen la suite définie par ug = % et,

U, +1

Vn €N, =
" Hnt1 Uy +2

s 1
On définit, pour tout x € R\{ -2}, f(x) = 5.

1. Montrer que I'intervalle ]0, 1[ est stable par f.

Soit x €]0, 1] . Montrons que f(x) €]0,1[. D’une part, on a

0<x<1
doncl <x+1<2

D’autre part,

0<x<1

donc2 <x+2<3
1 1 1 | P

donc = < <= car x — — strictement décroissante sur |0, 4-oo|
3 x+2 2 X

En multipliant les deux inégalités obtenues, on a,

1 < x+1 <1
3 x+2
et donc en particulier,
c+ 1
0<
x+2
c’est-a-dire
0<flx)<1

2. Montrer par récurrence que, pour tout n € N, u,, existe et u,, €]0, 1[.

On note, pour tout n € N, (P,) la propriété « u, existe et u, €]0,1[. »
e Initialisation: D’aprés I'énoncé, up = % €]0,1[. D’ot (Py) vraie.
e Hérédité: On suppose que (P,) est vraie pour un certain n € N. Montrons que (P, 1)
est vraie. D’apres I’hypothése de récurrence, u, existe et u, €]0,1[. En particulier,
u, # —2. Or, la fonction f est définie sur R\{—2}. Donc, u,; = f(u,) existe. De
plus, comme u,, €]0, 1], par stabilité de I'intervalle 0, 1] par f, u,+1 = f(u,) €]0,1[.
Donc (P,41) est vraie.

e Conclusion: Par le principe de récurrence,

pour tout n € N, u, existe et u, €]0,1]. ‘




Exercice 2 - Soit (uy)uen la suite définie par up = 1 et,

s

n

V}’IEN, M,H_]:?—f—

+ |§:N

On définit, pour tout x € R, f(x) = 5 + %2.
1. Montrer que I’intervalle ]0, 1] est stable par f.

Soit x €]0, 1] |. Montrons que f(x) €]0, 1]. D’une part, on a

0<x<1
donc 0 < = < : : >0
onc - <= car —
272 2
D’autre part,
0<x<1
donc 0 < x* < 1 car x — x° strictement croissante sur [0, 4-co|
2
1 1
d0n00<%§§ car§>0

En additionnant les deux inégalités obtenues, on a,

2

X X
0<-4+—=—<1
2 - 2~
c’est-a-dire
0<f(x)<1

2. Montrer par récurrence que, pour tout n € N, u, €]0,1].

On note, pour tout n € N, (B,) la propriété « u, €]0,1]. »

e [nitialisation: D’aprés 1’énoncé, up = 1 €]0,1]. D’ou (Py) vraie.

e Hérédité: On suppose que (P,) est vraie pour un certain n € N. Montrons que
(Py+1) est vraie. D’apres 1’hypothese de récurrence, u,, €0, 1], donc par stabilité de
I'intervalle ]0, 1] par f, u,+1 = f(uy,) €]0,1]. Donc (P,4) est vraie.

e Conclusion: Par le principe de récurrence, ’ pour tout n € N, u, €]0,1]. ‘




2 Etude de la monotonie

Exercice 3 - Avec la Méthode 1. On considere la suite (u,),en définie par
3 2
uozz et VneN, upp1 =u, —2u,+2

On définit, pour tout x € R, f(x) = x? —2x+2.
1. (a) Montrer que, pour tout 2 € N, 1,41 = (u, —1)> + 1.

Soit n € N. En développant 1’identité remarquable puis en utilisant la relation de
récurrence, on a,

(p —1)2 41 :uﬁ—2un+l—|—1 :u%—Zu”—l—Z

(b) A I’aide de la question précédente, montrer par récurrence que,
VneN, up € [1,2]
Montrons par récurrence que, pour tout n € N, la propriété
P(n) "u, € [1,2]"

est vraie.
e Initialisation. Montrons que &?(0) est vraie. D’apres I’énoncé, up = 3/2 € [1,2].
Donc Z7(0) est vraie.
e Hérédité.
On suppose que Z(n) est vraie pour un certain n € N, ¢’est-a-dire on suppose
que
up € [1,2]

Montrons que & (n+ 1) est vraie, ¢’est-a-dire, montrons que
Up+1 € [l , 2]
D’apres la question précédente, on a
_ 2
Upt+1 = (Mn - l) +1

Or, d’apres I’hypothese de récurrence, on a

1<u, <2
donc 0<u,—1<1
donc 0< (u,—1)><1 car la fct x + x? est croissante sur [0, +oo|
donc 1< (u,—1)>+1<2
crad 1 <u,y <2 d’apres la question précédente

Donc & (n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a montré que pour tout n € N, £ (n)
est vraie, ¢’est-a-dire

‘VneN, 11,16[1,2].‘

2. (a) Dresser le tableau de signe de la fonction x — f(x) — x.
Tout d’abord,

Vx R, f)—x=x®—2x+2—x=x>-3x+2=(x-2)(x—1)

On en déduit ainsi le tableau de signe de x — f(x) —x.



~+o0

£) 0 = o

(b) En déduire que la suite (u,),en est décroissante.
On sait que
a) Vxe[1,2],f(x) —x <0 b) Vn e N,u, €[1,2]
Donc, on en déduit que

Vn e N Un+1 _un:f(un)_unfo

La suite (#,)qen est| décroissante.




Exercice 4 - Avec la Méthode 2. On considére la suite (#,)nen définie par
uy=~0 et VneN, upy1 =exp(uy)
On définit, pour tout x € R, f(x) = exp(x). Démontrer par récurrence que pour tout n € N, u, < 14,1 1.

Montrons par récurrence que la suite (u,)nen est croissante. On note, pour tout n € N, (B,) la
propriété « u, < up4q. »

e [nitialisation: D’apres 1’énoncé, up = 0 et on peut calculer grace a la relation de récurrence
que u; = exp(ug) = exp(0) = 1. Donc uy < u;. D’ou (Ry) vraie.

e Hérédité: On suppose que (P,) est vraie pour un certain n € N. Montrons que (P,41) est
vraie. D’apres I’hypothese de récurrence, on sait que

Uy < Upiq
Or, la fonction f est croissante sur R (propriété sur la fonction exponentielle) Donc,

f(”tﬂ) < f(un+l)

c’est-a-dire
Ups1 < Upid

Donc (B,41) est vraie.

e Conclusion: Par le principe de récurrence, | pour tout n € N, u,, < u41. ‘La suite (i) nen

est donc | croissante.




3 Convergence grace au théoreme de la limite monotone [Méthode 3]
Exercice 5 - Convergence vers une limite finie. Soit (u,)nen la suite définie par uo = 1 et, pour tout

neN, u 1 =+ 1+u,.
1. Monter que ¢ = % + ‘/75 (=~ 1.6) est un point fixe de la fonction f : x — /1 +x.

Vot+tl=9¢ <= o+1=¢°

Comme ¢ > 0,

Puis, on montre que

P =0p+1

2. Montrer que la suite (u,),en est bien définie et que, pour tout n € N, u, € [1, @].

Montrons par récurrence que, pour tout 7 € N, la propriété
P(n) "u, existe et u, € [1,¢]"

est vraie.
e Initialisation. Montrons que &(0) est vraie. D’aprées I’énoncé, up = 1 € [1, ¢]. Donc
Z(0) est vraie.
o Hérédité.
On suppose que & (n) est vraie pour un certain n € N, ¢’est-a-dire on suppose que

uy existe et u, € [1,¢]
Montrons que & (n+ 1) est vraie, ¢’est-a-dire, montrons que
Uupy existe et u, € [1, @]

D’apres I’hypothese de récurrence, u, € [1,¢]. En particulier, u,, > —1. Or la fonction
fix— +/1+x est définie sur [—1,4+o0[. Donc la quantité f(u,) est bien définie,
c’est-a-dire u, . existe. De plus, en utilisant a nouveau I’hypothese de récurrence, on
a
1<u, <o

donc 2<u,+1<@+1

donc V2 <V, +1</o+1  carlafct x — /x est croissante sur [0, +oof

donc V2<up1 < ¢

afortiori 1 <up41 <@

Donc &(n+1) est vraie.
e Conclusion. Par principe de récurrence, on a montré que pour tout n € N, & (n) est
vraie, ¢’est-a-dire

‘Vn €N, u, existe et u, € [, 1] ‘

3. Montrer que (uy)nen st croissante.

En étudiant la fonction x — /1 + x — x, on peut montrer que son tableau de signe est donné

par
x -1 1+ oo
flx)—x + 0 -
Or, on sait que
a) Vxep,1],f(x)—x>0 b) Vn e N,u, € [¢,1]



Donc, on en déduit que
Vn e N, U1 —up = f(uy) —uy, >0

La suite (uy)qen est | croissante.

4. En déduire que (u,) converge vers un réel /.

D’apres les questions précédentes, la suite (u,) est... Donc, d’apres le théoréme de la

limite monotone, la suite (u;,) ’ converge vers un réel /. ‘

5. Déterminer la valeur de la limite /.

D’aprés la question précédente, la suite (u,) converge vers un réel £. Or,

Vn €N, Upr1 =/ 1 +uy,
Donc, en passant a la limite, on obtient que
{=v1+/

c’est-a-dire (la résolution de cette équation a déja été menée dans le cours)

1445
2

1

Donc, la suite (u,) | converge vers HT‘E




Exercice 6 - Divergence. Soit (u,),en la suite vérifiant ug > 0 et,
1

Vn eN, Upt1 = Up+ —

U

1. Montrer par récurrence que, pour tout n € N, u, > 0.

Montrons par récurrence que, pour tout n € N, la propriété
P (n) "u, > 0"

est vraie.
e Initialisation. Montrons que #(0) est vraie. D’apres 1’énoncé, uy > 0. Donc Z(0)
est vraie.
o Hérédité.
On suppose que & (n) est vraie pour un certain n € N, ¢’est-a-dire on suppose que
u, >0
Montrons que & (n+ 1) est vraie, ¢’est-a-dire, montrons que

Uy >0

Drapres la question précédente, on a

Upy1 = Uy + —
n

Or, d’une part, d’apres 1’hypothese de récurrence,
u, >0

et donc !
— >0
Uy
(comme quotient de deux termes strictement positifs). Donc, en tant que somme de

deux termes strictement positifs,

1
Upt] = Up+ — >0
n
Donc & (n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a montré que pour tout n € N, & (n) est
vraie, ¢’est-a-dire

Vn €N, u, >0

2. Montrer que la suite (u,),en €st croissante.

On a, en utilisant la question précédente que

1
VneN, Upy1 —Up=—>0

n
Donc, la suite (u,),en est | croissante.

3. En déduire qu’il existe seulement deux comportements possibles pour la convergence de la suite.
4. Démontrer que la suite (uy,),en est divergente vers +eo. On pourra raisonner par I’absurde.

Résolution des Questions 3 et 4 ensemble. D’apres la question précédente, la suite (u,)nen
est croissante. Donc, d’apres le théoréme de la convergence monotone,

e Soit la suite (u,)nen admet une limite finie.
e Soit la suite (u,)nen diverge vers +-oo.

Supposons par 1’absurde que la suite (u,),en admette une limite finie £ € R.



e Premier cas. Si ¢ # 0, comme,

1
Vn e N, Upy1 = Up+ —

Un

en passant a la limite, on obtient
soit
ce qui est absurde.
e Deuxi¢me cas. Si ¢ =0, comme la suite (u,),en est croissante
Vn e N, Uy > U
et en passant a la limite, on obtient,

0> up

Ce qui est absurde car 1’énoncé indique que ug > 0.
Ainsi, la suite (uy)nen ne peut pas admettre une limite finie. Donc nécessairement, la suite

(un)nEN ’ diverge vers oo, ‘




4 Etude grace a I'TAF [Méthode

Exercice 7 - On définit la suite (u,),en avec ug = 1 et

1
VneN, un+1=un+z(2—uﬁ)
On pose, pour tout x € R, f(x) =x+ +(2—x?).
1. Montrer que, pour tout n € N, w1 = u,(1 — %un) +
2. Montrer que, pour tout n € N, u, € [1,2].

N —

Montrons par récurrence que, pour tout n € N, la propriété
P(n) "u, € [1,2]"
est vraie.
e Initialisation. Montrons que #?(0) est vraie. D’apres 1’énoncé, up = 1 € [1,2]. Donc
Z(0) est vraie.
o Hérédité.
On suppose que & (n) est vraie pour un certain n € N, ¢’est-a-dire on suppose que
up € [1,2]
Montrons que & (n+ 1) est vraie, ¢’est-a-dire, montrons que
Up+1 € [l 72}
D’une part, d’apres 1’hypothese de récurrence,

1 <u, <2

D’autre part, en utilisant de nouveau 1’hypothese de récurrence, on a

1<u,<2
1 1 1
donc l—jﬁ—%ungg—z
donc 5 <1—gzu, <3

donc,
1 1
1 <u,(1- Zu”) + 5 <2
c’est-a-dire
1 <wup <2

Donc Z(n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a montré que pour tout n € N, & (n) est
vraie, ¢’est-a-dire

vn e N, u”e[hz].‘

3. Déterminer les points fixes de la fonction f.
Soit x € R. On a,

fx)=x <= x+%(27x2):x = i(foz):O — x=V2oux=—V2

La fonction f admet deux points fixes qui sont

4. (a) Montrer que
well2,  [fwl<

N =

10



Tout d’abord, la fonction f est dérivable sur R (en tant que fonction polynomiale) et sa
dérivée vaut

Vx eR, flx)=1-=x

Soitx € [1,2]. On a,

On obtient donc en particulier que la dérivée est positive et bornée par % sur [1,2] et
donc,

vee[l,2,  If )l =f(x) <

(b) En déduire que
1
Va.be[1,2],  |f(b) - fla)l < 5lb—al

On applique I’inégalité des accroissements finis a la fonction f car
@ La fonction f est dérivable sur [1,2].
@ Tl existe k= 3 > 0 tel que pour tout x € [1,2], ona | f/(x)| < k.
Donc,

V(a,b)E[],z], |f(b)_f(a) ST =

(c) En déduire que

1
Vn €N, |un+1—ﬁ|<§|un—ﬁ|.

Soit n € N. En prenant b = u, et a = /2 dans I’inégalité précédente (car u, et /2

appartiennent a [1,2]), comme f(u,) = u, 1 (par construction) et f(v/2) = v/2 (cf
Question 2), on obtient

1
|41 _\[2| < §|un_ ‘ﬁ|

5. Montrer par récurrence que,

1 n
VneN,  |u,—V2|< <§) I1—V2]
Montrons par récurrence que pour tout n € N, la propriété &2 (n) suivante est vraie
1 n
P(n): «|u,— \/§| < (2) |1 —\/§| ».
e [nitialisation. Montrons que la propriété &?(0) est vraie, ¢’est-a-dire que
1\°
-2l < (3) -va
D’apres I’énoncé, up = 1. Donc, la propriété &?(0) est vraie.

11



e Hérédité. Soit n € N. On suppose que la propriété & (n) est vraie, ¢’est-a-dire que
l n
=212 (5) 11-v2
On veut montrer que la propriété &?(n+ 1) est vraie, ¢’est-a-dire que
1 n+1
i1 — V2| < (2> [1-v2|
D’apres I'TAF, (Question 3(c)) on sait que
1
|l/ln+] — \/§| < §|l/ln — \/§|
Donc, en utilisant I’hypothese de récurrence, on a

1
|un+l —\6| < 5 X |un_2|

<1>< ! n|lf\/§|
S 2 2

1 n+1
(2> 11—v2|
Donc la propriété & (n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a démontré que

N

1 n
vneN,  |u,—V2|< (2) I1—v2|

6. En déduire que (u,),en converge et donner sa limite.

On vient de démontrer que
1 n
vneN,  |u,—v2|< <2> I1—V2|

Or, par propriété sur les suites géométriques, on a

n—r+-o0

) 1 n 1
lim 2<2) =0 car —1<5<1.

Donc, par théoreme des gendarmes, la suite (u,),cn admet une limite et

lim u, =2.
n—r—-o0

7. A partir de quel rang n a-t-on |u, — /2| <1079 ?

On a démontré que
1 n
VneN, |u,1—\6|§(2) I1-V2|

Donc, si (%)” [1— \@| < 1072 alors a fortiori, |u, — \/E\ <107°. Or,

(;>1 —V2|<107? = nln(%)+ln(\1 —V2|) <In(107%)
— nln(%) <In(10~%) —In(|1 —v/2|)
In(107%) —In(|1 —v/2|)
In(3)

1
= n> carln(§)<0

12



Donc, il suffit de prendre

L111(10—9)—111(|1—ﬂ|)

+1=29
In(5 J

|—
~—

13



Exercice 8 - Avec un point fixe abstrait. On définit la suite (u,),en avec up =0 et

eln

Vn €N, =—.
" Hntl en 41

On pose, pour tout x € R, f(x) = cf—;.
1. Montrer que, pour tout n € N, u, € [0,1].

Il n’est pas nécessaire ici de se lancer dans une récurrence. Soit n € N. D’une part, par
positivité de I’exponentielle,

e >0 et e +1>0

Donc, comme quotient de deux termes strictement positifs,

e”n
Upt1 = o 11 >0
De plus, on a aussi immédiatement,
C”” S Clln +l
et donc,
e”ﬂ
- <
] en +1 = l
Ainsi, on vient de démontrer que
Vn €N, Ut € [0,1]

c’est-a-dire que la propriété est vraie pour uj,us,.... Comme ug = 0, la propriété est aussi
vraie au rang 0. Donc finalement,

‘VnGN, u,,G[O,l]‘

2. (a) Soit g: R — R définie par, pour tout x € R, g(x) = f(x) —x. Montrer, grace au théoréme de la
bijection que g réalise une bijection de ]0, 1| vers un intervalle & déterminer.

e L’ensemble |0, 1] est un intervalle.
e La fonction g est continue sur |0, 1].
e La fonction g est dérivable sur |0, 1] et

Vx €]0, 1],

o
Py
[
=
Il
~
—~
=
=
\
|
AN
(@]

BGED CE:

Donc g est strictement décroissante sur |0, 1[.
Donc, d’apres le théoréme de la bijection, la fonction g réalise une

T e 1
bijection de ]0, 1] vers }c+ T~ L 5[

(car g(0) = % etg(l)= 1 b
(b) En déduire qu’il existe un unique & €]0, 1] tel que
fla)=a.

On admet que CJFLI — 1~ —0.26. On ne demande pas ici de déterminer la valeur de Q.

14



D’apres la question précédente, la fonction g réalise une bijection de |0, 1] vers | ;3 —
1, % [, c’est-a-dire

e 1

-1, 3! 1 = .
e+1 /2[? a 6]07 [’ y g(a)

Yy €]

Comme {7 — 1 ~ —0.26, on peut prendre en particulier y = 0 €] ;f7 — 1, %[ et on

e+l
obtient,
dla €]0, 1], 0=g(a).

c’est-a-dire

(a1, a=f(a)]

(a) Montrer que la dérivée de f est bornée sur [0, 1].

Tout d’abord, la fonction f est dérivable sur [0, 1] et sa dérivée est donnée par

eJC

Vx €10,1], ") = ———
ve01) 0=
On remarque que la dérivée est positive sur [0, 1] et donc

ex

Vx € [0,1], \f'(X)|=f'(x):W

Soit x € [0, 1]. D une part (estimation du dénominateur), on a,

0<x<1
donc 1<e<e car x — ¢e" croissante sur R
donc 2<e+1<e+1

1 1 1 1
donc <——< = car x — — décroissante sur |0, 40|
e+l “ e 4172 X
1 1 1 ,
donc car x — x~ croissante sur [0, 4-oo|

et - (@+12 "4

D’autre part (estimation du numérateur), on a déja démontré que
1<e"<e

Donc, en multipliant les inégalités, on obtient

1 e’

e
< <=
1?2 = e+ =4
En particulier, on a montré que
X
0,1 ) = ) = — < &
el IFeI=r0= e <

La dérivée de f est bornée sur [0, 1]. ‘

(b) En déduire que

vabe0.1],  |f(b)~fla)| < Zlo—al

On applique I’inégalité des accroissements finis a la fonction f car
@ La fonction f est dérivable sur [0, 1].
@ Ilexiste k = § > 0 tel que pour tout x € [0,1], on a [f'(x)| < k.
Donc,

v(ap) €01, |f(b)~fla)l < 5lb—a]

15



(c) En déduire que
VneN, |un+1—a|<§
Soit n € N. En prenant b = u,, et a = ¢ dans I’inégalité précédente (car u, et o appar-
tiennent a [0, 1]), comme f(u,) = u,+1 (par construction) et f(c) = o (cf Question
2(b)), on obtient

|un — ).

€
i1 — ] < S lun —

4. Montrer par récurrence que,
e\”"
wmeN,  Ju—al<(3) lw-o

Montrons par récurrence que pour tout n € N, la propriété &2 (n) suivante est vraie

e\N"
ﬁmy«ume§(ﬁ|%fab.
e [nitialisation. Montrons que la propriété &?(0) est vraie, ¢’est-a-dire que
e\ 0
—a < (5) -
juo—af < () |uo—af

D’aprés 1’énoncé, up = 0. Donc, la propriété &7(0) est vraie.
e Hérédité. Soit n € N. On suppose que la propriété & (n) est vraie, ¢’est-a-dire que

e\"
jun— 0| < (3) w0 —
On veut montrer que la propriété &2(n+ 1) est vraie, ¢’est-a-dire que
e n+1
1 =l < () Juo—
4
D’apres I'TAF, (Question 3(c)) on sait que
e
lup1 — | < Z|un —a.
Donc, en utilisant I’hypothese de récurrence, on a

X |up — @

en
x(3) o —a

e\ n+l
7)o

|Mn+1 - OC‘ <

N

~—/—~ &l K~ O

<

Donc la propriété & (n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a démontré que

e\”n
wmeN,  fu—al<(3) lw-a

5. En déduire que (u,),en converge et donner sa limite.

On vient de démontrer que

e\”"
VneN,  |up—a| < (Z) o — |
Or, par propriété sur les suites géométriques, on a
e\” e
lim 2(5) =0 car  —l<Z<l.
n—r—-oo 4 = 4 =

Donc, par théoreme des gendarmes, la suite (u,),cn admet une limite et

Iim u, =«
n—r—oo

16



S Approfondissement

Exercice 9 - Ecricome 2023, Maths E. On considére la fonction f définie sur |0, +oo[ par :

[N

Vx 6]07 +°°[7 f(x) = %

On rappelle que 2 < e < 3.
1. (a) Montrer que f est dérivable sur |0, 40| et que, pour tout réel x de ]0,+oo] :

(x—1)
2x

flx) = f(x)

(b) Dresser le tableau de variations de f et déterminer les limites suivantes 1in(1) fx)et lirf f(x).
xX— X—>+o0

(c) Tracer I’allure de la courbe représentative de f.
(d) Montrer que, pour tout entier n supérieur ou égal a 2 , ’équation f(x) = n, d’inconnue x dans
10, +oo[, posseéde exactement deux solutions u, et v,, avec:

O<u, <l<w,.

2. (a) Montrer que la suite (v,),-, est croissante.
(b) Montrer par I’absurde que la suite (v,),,, tend vers 4o quand n tend vers +oo.
3. (a) Montrer que la suite (1), est décroissante.
(b) En déduire que la suite (u,) q1>2 converge. Dans les questions qui suivent, on note ¢ la limite de
la suite (u),>,-
(c) Montrer par I’absurde que ¢ = 0.
(d) En déduire que lim,,_,, n’u, = 1 puis un équivalent simple de u, lorsque n tend vers oo
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Exercice 10 - Lorsque la fonction est décroissante.... On définit la suite (#,)nen par up = 1 et

1
VnEN, Mn+1:1+—
n
. 1
Soit I = [1,2]. Pour tout x € I, on pose f(x) =1+ —etg= fof.
X
1. Démontrer que la suite (u,),en est bien définie et que pour tout n € N, u,, € 1.

Montrons par récurrence que, pour tout n € N, la propriété
P (n) "u, existe et u, € I"

est vraie.
e Initialisation. Montrons que Z(0) est vraie. D’apres ’énoncé, up =1 € I. Donc
Z(0) est vraie.
o Hérédité.
On suppose que & (n) est vraie pour un certain n € N, ¢’est-a-dire on suppose que
u, existe et u, € 1
Montrons que & (n+ 1) est vraie, ¢’est-a-dire, montrons que

Up41 existe et u, €1

D’apres I’hypothese de récurrence, u,, € I. En particulier, u, # 0. Or la fonction f
est définie sur R\{0}. Donc la quantité f(u,) est bien définie, ¢’est-a-dire u, existe.
De plus, en utilisant a nouveau I’hypothese de récurrence, on a

1 <up, <2
donc 1< ;7 <1 car la fct x— 1 est décroissante sur |0, +oo]
donc 3<1+ i <2
c-a-d 3 <upp1 <2
afortiori 1 <y <2

Donc & (n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a montré que pour tout n € N, & (n) est
vraie, ¢’ est-a-dire

‘ VneN, u, existe et u, € [

2. Justifier que f est strictement décroissante sur / et que g est strictement croissante sur /.

e La fonction f est dérivable sur / et

1
VXEI, f/(x):7;<0

Donc la fonction ‘ f est strictement décroissante sur /. ‘
e Tout d’abord,

vrel, g(x)=f(f(X))=1+1=l+H]J(:1+

Ainsi, la fonction g est dérivable sur [ et

1
V)CEI, g/(x):mzo

Donc la fonction ‘ f est strictement croissante sur /. ‘

3. Vérifier que, pour tout n € N, 1,2 = g(u,) et en déduire que les suites extraites (2, )nen €t (2741 )neN
sont convergentes. Préciser leurs limites.
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Soit n € N. On peut commencer par remarquer que

8(un) = f(f(n)) = f(un11) = thny2

En posant, pour tout n € N, v, = ua,,, on obtient que la suite (v,),en Vérifie la relation de
récurrence
Vn €N, Vn+1 :g(vn)'

e On sait que, pour tout n € N, u, € I, donc en tant que suite extraite, on récupere que
pour tout n € N, v, € I. En particulier, la suite (v,),en est majorée par 2.
e De plus, on peut calculer que vo =up=1etvy =ur = % Ainsi, vy < vq. Etla fonction
g est croissante sur /. On peut montrer par récurrence (voir par exemple Exercice 4)
que, pour tout n € N, v, < v, 1], c’est-a-dire la suite (v,),en est croissante.
Ainsi, d’apres le théoréme de la limite monotone, la suite (v, ),en admet une limite finie
¢ eR.Or,

Up
u, +1

VneN, Var1 =g(vn) =1+

Donc, en passant a la limite, on obtient que

¢
=14
T

En résolvant I’équation, on en déduit que

b=gtm o f=5-

Or, on sait que, pour tout n € N, v, € [1,2] et donc, en passant a la limite, £ € [1,2]. Donc
nécessairement,

Ainsi, la suite (v, ),en converge vers %4— ﬁ, ¢’est-a-dire la suite | (12, )nen coOnverge vers % +

V3

5

On montre de méme que la suite (#2,+1)zen converge vers la méme limite.
4. Démontrer que la suite (u,),en est convergente et donner sa limite.

Les suites extraites (42, )nen et (U2,+1)nen sONt convergentes et admettent la méme limite

1,5
1+

qui est % + ? Ainsi, la suite | (1, ),en st converge aussi vers
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Exercice 11 - Suites définies de maniére implicite. On considére la fonction f : R — R définie par, pour
tout x € R, f(x) =e* —x.
1. Dresser le tableau de variations de f.

On a,
Vx €R, flx)=¢e"—1
X —oo 0 o0
f'(x) - 0+

2. En déduire que, pour tout n > 2, I’équation e* = x + n admet exactement deux solutions réelles x;, et
yn telles que
X <0 <yy

Montrons que la fonction f réalise une bijection de | — e, 0[ sur un intervalle a déterminer.

e L’ensemble | — o0, 0] est un intervalle.
e La fonction g est continue sur | — oo, 0.
e D’apres le tableau de variations, la fonction f est strictement décroissante sur | —
o0, 0].
Donc, d’apres le théoreme de la bijection, la fonction f réalise une

’ bijection de | — 0, 0[ vers }174_00[‘

(car f(0) =1let lim f(x)= +oo). En particulier,
xX——o0

Vy €]l,+oo,  Fx€]—o0,0[, y=f(x)

Soit n > 2. En prenant y = n €]1, 40|, on obtient

3, €] =00, n=f(x)

autrement dit, I’équation e* — x = n admet une unique solution x,, €] — o0, 0[. De méme, on
montre que la méme équation admet une unique solution y, €] — e, 0] en montrant que f
réalise cette fois-ci une bijection de ]0,+oo[ vers |1, 4-oo].

3. Montrer que la suite (x,),>2 est décroissante.

Soit n > 2. On sait que, par construction f(x,) =n et f(x,+1) =n+ 1. De plus, on sait que
n+1>n

c’est-a-dire
f(xn+1) Z f(xn)
Or, x;, et x,41 sont dans | — o, 0] et la fonction f est décroissante sur | — oo, 0[, on en déduit

que
Xn+1 S Xn

Ainsi, la suite (x,),>2 est| décroissante.

4. En déduire, par un raisonnement par I’absurde, que la suite (x;,),>» diverge vers —eo.

D’apres la question précédente, suite (x,),>2 est décroissante. Donc, d’apres le théoréeme
de la limite monotone,

e soit la suite (x,),>> admet une limite finie,
e soit la suite (x,),>» diverge vers —oo.
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Supposons par 1’absurde que la suite (x,),>2 admet une limite finie ¢ € R. Or, on sait que
VneN, fGan)=n

Or,

lim n= et lim —ef—v
n~>+oon e n~>+oof(x”)

par continuité de f sur R. Par unicité de la limite, ceci est absurde. Donc nécessairement,

la suite (x,),>2 ’ diverge vers —eco. ‘

5. Etudier de méme la convergence de la suite (y,),>2

On peut montrer de méme que la suite (y,),>2 est croissante et qu’elle ne peut pas admettre
de limite finie, donc nécessairement, d’apres le théoreme de la limite monotone, la suite

(Yn)n>2 ’ diverge vers +oo. ‘
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Exercice 12 - Ecricome 2022 Maths E. Pour tout réel x > 0, on pose :

o[- )i

Partie | : Etude de la fonction ¢
1. Déterminer
lim g(x) et lim g(x)

x—0t+ X—>-oo

e Déterminons d’abord la limite de g en 0. Tout d’abord, on sait que

. . 1
lim — = +o donc lim 2— - = —o0
x—0T X x—0*F X

On sait également que

Donc, par produit,

Puis par composition,

lim g(x) |= lim exp ((2— l) ln(x))

x—01 x—0t

~

e Déterminons ensuite la limite de g en +co. Tout d’abord, on sait que

1 1
Iim - =0 donc Iim 2——-=2
X—>oo X X0 X

On sait également que
lim In(x) = +oo

X—>o0

Donc, par produit,

lim (2 - 1) In(x) = oo

X—r+oo

Puis par composition,
; . 1
et (2 ) o)) =5

2. Soit & la fonction définie sur R*, par :

Vx>0, h(x)=In(x)+2x—1

(a) Démontrer que la fonction / est strictement croissante sur R”,..

Tout d’abord, la fonction x > In(x) est dérivable sur R* et la fonction x — 2x — 1 est
dérivable sur R donc a fortiori sur R*.. Donc, par somme, la fonction / est dérivable sur
R? et sa dérivée est donnée par,

Vx > 0, h’(x):;—|—2

On obtient donc directement que

Vx >0, W (x) > 0.

Donc, | la fonction / est strictement croissante sur R, ‘
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(b) Démontrer qu’il existe un unique réel a > 0 tel que h(a) = 0.

e La fonction A est définie sur I'intervalle |0, +oo].
e La fonction £ est continue sur |0, +-eo| (car dérivable sur |0, +oo[ d’apres la question
2(a)).
e La fonction 4 est dérivable sur |0, +eo[ d’apres la question 2(a).
Donc, d’apres le théoréme de la bijection, la fonction 4 réalise une bijection de |0, +oof
sur

] lim A(x), lim A(x)|

x0Tt X—>o0

Or, on peut calculer directement par somme que

lim A(x) = —oo et lim A(x) = oo
x—0+ x—0F

Donc, la fonction 4 réalise une bijection de ]0,+eo[ sur R. Or, 0 € R.
Donc, | il existe un unique o €]0,+oo| tel que 2(cr) = 0. ‘

. 1
(c) Justifier que 5 < @ < 1.

Commencons par montrer que

h (;) <h(a) < h(1).

Grace a I’expression de la fonction /4, on peut calculer directement que

h<;):—ln(2)<0 A(l)=1>0

Or, par construction faite a la question 2(b), ~(or) = 0. Donc, on obtient bien que

h (;) <h(a) < h(1).

Puis, comme £ est strictement croissante sur |0, +oo[, on obtient que

T<a<l
(d) Démontrer que :
1
Vx>0, §'(x) = hlx)g)

Tout d’abord, la fonction g est dérivable sur R par opérations de fonctions dérivables
sur R (en raisonnant comme a la question 2(a)). De plus, sa dérivée est donnée par,

>0, g()]= (xlz X In(x) + (2_ i) i) exp ((2— i) ln(x)>
- % (In(x) + 2x — 1) exp ((z_ i) 1n(x)>

(e) En déduire les variations de la fonction g sur R .
D’apres la question 2(d), on a,

Vx>0, g'(x)=—h(x)g(x)
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Or,

1
Vx>0, - >0 et Vx>0, gx)>0
x
Donc, pour tout x > 0, le signe de g(x) est celui de A(x). Or, A est strictement croissante
sur |0, +oof et (o) = 0 (ol ¢ a été définie a la question 2(b)). Donc £ est négative sur
10, o] et & est positive sur Jo, +-oo[. On peut en déduire le tableau de signe de g’ et donc
le tableau de variations de g de la maniére suivante.

X 0 o 400
g - 0 +
+o0 +o0
) e

Les limites présentes dans la tableau de variations de g ont été calculée a la question 1.
Le calcul de g(o) n’a pas été effectué. On en déduit que

° ’ la fonction g est décroissante sur |0, o/,

e ct ’ croissante sur |, +-oo|. ‘

Partie Il : Etude d’une suite récurrente
Soit (u,)nen la suite définie par son premier terme g > O et la relation de récurrence :

VneN, Unt1 = &(Un)-

3. Démontrer par récurrence que, pour tout entier naturel n, u, existe et u, > 0.
Montrons par récurrence que pour tout n € N, la propriété &7 (n) suivante est vraie

P(n): «uy existe et u, > 0 ».
e [nitialisation. Montrons que la propriété &?(0) est vraie, ¢’est-a-dire que
ug existe et ug > 0.

D’aprés 1’énoncé, up > 0. Et donc, la propriété Z2(0) est vraie.
e Hérédité. Soit n € N. On suppose que la propriété & (n) est vraie, ¢’est-a-dire que

u, existe et u, >0
On veut montrer que la propriété &?(n—+ 1) est vraie, ¢’est-a-dire que
Upt1 existe et u,41 >0

D’apres I’énoncé, on sait que
Up+1 = g(un)-

Or, u, > 0 par hypothese de récurrence donc g(u,) (et donc u,+ est bien défini). De
plus, par propriété de I’exponentielle.

Vx>0, g(x)>0.
Donc, en prenant x = u,, dans cette inégalité (possible car u, > 0), on obtient
Uny1 = g(up) > 0.

Donc la propriété & (n+ 1) est vraie.
o Conclusion. Par principe de récurrence, on a démontré que

’Vn €N, u, existe et u, >0
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4.

(a) Etudier le signe de (x— 1)In(x) pour x > 0.

On peut dresser le tableau de signe suivant, en regardant le signe de chacun des termes

du produit.
X 0 1 oo
x—1 — 0 4
In(x) - 0 +
(x—1)In(x) + 0 +

De ce tableau de signe, on en déduit que

Vx>0,  (x—1)In(x) >0]

et

’(x—l)ln(x)zo <:>x:1.‘

(b) Montrer que
(x)

Vx>0, == >1.
X
On pourra utiliser que, pour tout x > 0, x = exp(In(x)).

Soitx > 0. On a

Or, x > 0 et d’apres la question 5(a), (x—1)In(x) > 0. Donc

(x—1)In(x)

>0

et par croissance de 1’exponentielle

exp (“‘”% > exp(0).

X

Finalement, on a bien montré que

Vx>0, @21.

(c) En déduire que pour tout réel > 0, on a g(x) > x et que I’équation g(x) = x admet 1 comme
unique solution.

D’apres la question 5(b),

~—

Vx>0, &21.
X
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Donc,

’Vx >0, g(x) = x,

car on a multiplié I’inégalité par une quantité positive. De plus, en reprenant les calculs
de la question 5(b), on a, pour tout réel x > 0,

. B =0 < (x—=1)In(x)=0 |& x=1,

en utilisant le résultat de la question 5(a). Donc I’équation g(x) = x admet une unique
solution donnée par x = 1.

5. Etudier les variations de la suite (tn)neN-

D’apres la question 5(c), on sait que
Vx>0, glx) =x.

Si on applique 1’inégalité précédente a u,, pour tout n € N (ce qui est possible car pour tout
n €N, u, > 0 d’apres la question 3), on obtient

Vn €N, g(uy) = up,
c¢’est-a-dire d’apres la construction de la suite (uy),en,

VHEN, Unp+1 Z Uy.

Donc,

la suite (u,)nen est croissante. ‘

6. Dans cette question uniquement, on suppose que ug € [, 1].
(a) Démontrer que

1
Vn eN, u, € {—,1]
2
Montrons par récurrence que pour tout n € N, la propriété &2 (n) suivante est vraie

P(n): «uy € [;,1:| ».

e [nitialisation. Montrons que la propriété &?(0) est vraie, c’est-a-dire que

1
-1
u0€|:2, :|

D’apres 1’énoncé, uy € [%, 1]. Et donc, la propriété 2(0) est vraie.
e Hérédité. Soit n € N. On suppose que la propriété & (n) est vraie, ¢’est-a-dire que

1
Uy € |:2,1:|

On veut montrer que la propriété &2 (n+ 1) est vraie, ¢’est-a-dire que

1
Upy1 € |:2~ ]:|

Premierement, d’apres la question 6, la suite (u,),en est croissante donc

1

Upyl 2 Uy = X

en utilisant I’hypothese de récurrence. Deuxiemement, d’apres 1’énoncé,

i =gl =exp ( (2 - ) ntun) )
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Or, par hypothese de récurrence, u, < 1. Donc, par croissance du logarithme sur
10, +oo[, on obtient
In(u,) <In(1) =0

De plus, comme u,, > %, par décroissance de la fonction inverse sur |0, e[, on en
déduit que

2——2>0.

Un

(2~ 1) <o

Donc, par croissance de I’exponentielle sur R, on a

exp (2 - ) mln) ) < expl0),

Upr1 < 1.

Donc,

c’est-a-dire

Donc la propriété & (n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a démontré que

Vn e N, u, € [%,1}

(b) En déduire que la suite (u,),en converge.
La suite (u,)nen est croissante (question 6) et majorée par 1 (question 7(a)). Donc,

par le théoréme de la convergence monotone,| la suite (uy),en admet une limite réelle

(e [% 1} (en passant a la limite dans I'inégalité de la question 7(a)).
(c) Déterminer la limite de la suite (uy)nen-
On sait que
Vn e N, g(uy) =ty

Or d’apres la question 7(b), la suite (u,),en admet une limite ¢. Donc, en tant que suite
extraite,

lim Upy1 = /.
n—r+oo

De plus, comme g est continue sur R* , on a aussi que

lim g(u,) =g(¢).

n—r—+oo

Donc, par unicité de la limite,

gll)=¢.
Or, on a vu a la question 5(c), que I’équation g(x) = x admet une unique solution
donnée par x = 1. Donc, nécessairement,

(=1,

c’est-a-dire ’ la suite (uy)nen converge vers 1. ‘

7. Dans cette question uniquement, on suppose que ug > 1.
(a) Démontrer que
Vn €N, u, >1

Montrons par récurrence que pour tout n € N, la propriété &2 (n) suivante est vraie
P(n): «uy > 1».

e [nitialisation. Montrons que la propriété &?(0) est vraie, c’est-a-dire que

ug > 1

D’aprés 1’énoncé, up > 1. Et donc, la propriété &2(0) est vraie.
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e Hérédité. Soit n € N. On suppose que la propriété & (n) est vraie, ¢’est-a-dire que
u, > 1
On veut montrer que la propriété &2 (n+ 1) est vraie, ¢’est-a-dire que
Upt1 > 1
D’apres I’énoncé,
Unt1 = g(un)
Or, par hypothese de récurrence,

u, > 1.

Or d’apres la question 2(e), la fonction g est strictement croissante sur ] o, +oo] et
donc sur |1, 4o car @ < 1 d’aprés la question 2(c). Donc

g(un) > g(1),
c’est-a-dire
Up+1 > 1.

Donc la propriété Z(n+ 1) est vraie.
e Conclusion. Par principe de récurrence, on a démontré que

Vn e N, U, € [%,1]

(b) Démontrer que la suite (#,)nen tend vers +oo.

D’apres la question 6, la suite (u,),en est croissante. Donc, d’apres le théoréme de la
limite monotone,

e soit la suite est majorée et elle converge vers un réel /,

e soit la suite diverge vers +oo.
Or si la suite convergeait vers un réel ¢, alors en raisonnant comme a la question 7(c),
on obtiendrait que ¢ = 1. Or, la suite étant croissante,

VneN, Uy = Uo

et donc en passant a la limite
{>uy>1

Ce qui est absurde. Donc finalement,

la suite (up)nen diverge vers +-oo.
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