8. Nouvelles fonctions usuelles

Pour bien démarrer : des rappels sur les fonctions bijectives

Proposition 0.1 — Théorème de la bijection. Soit $f: I \to \mathbb{R}$ une fonction.

On suppose que

- ① L'ensemble *I* est un **intervalle**.
- ② f est **continue** sur I,
- ③ f est **strictement monotone** sur I.

Alors, la fonction f réalise une bijection de I sur l'*intervalle* J = f(I). On note $f^{-1}: J \to I$ sa bijection réciproque.

Proposition 0.2 — Composée de f **et** f^{-1} . Soit f une fonction bijective de I vers J. Alors,

- a) Pour tout $x \in I$, $f^{-1}(f(x)) = x$.
- b) Pour tout $y \in J$, $f(f^{-1}(y)) = y$.

De plus, pour tout $x \in I$ et $y \in J$, on a

$$y = f(x) \iff x = f^{-1}(y)$$

Proposition 0.3 Soient $f: I \to J$ et $g: J \to I$. On suppose que

- ① Pour tout $x \in I$, g(f(x)) = x.
- ② Pour tout $x \in J$, f(g(x)) = x.

Alors, f est bijective et sa bijection réciproque est donnée par g.

1 Logarithme décimal et en base 2

Définition 1.1

• Le logarithme décimal, notée log₁₀ ou log, est la fonction définie par

$$\log_{10} : \mathbb{R}_{+}^{*} \to \mathbb{R}$$

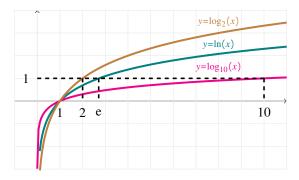
$$x \mapsto \frac{\ln(x)}{\ln(10)}$$

• Le logarithme en base 2, notée \log_2 , est la fonction définie par

$$\log_2 : \mathbb{R}_+^* \to \mathbb{R}$$

$$x \mapsto \frac{\ln(x)}{\ln(2)}$$

Les graphes du logarithme décimal et en base 2 s'obtiennent par **dilatation verticale** du graphe du logarithme : la courbe s'aplatit verticalement pour le logarithme décimal (car le rapport de la dilatation est $\frac{1}{\ln(10)} < 1$) et s'élargit verticalement pour le logarithme en base 2 (car le rapport de la dilatation est $\frac{1}{\ln(2)} > 1$).



Les règles de calcul de ln s'étendent au logarithme décimal et au logarithme en base 2. La différence est que

$$\log_{10}(10) = 1$$
 et $\log_2(2) = 1$ au lieu de $\ln(e) = 1$

Le logarithme décimal est utilisé notamment en physique-chimie et le logarithme en base 2 en informatique. L'intérêt de ces deux fonctions est la propriété suivante.

Proposition 1.2 Pour tout
$$n \in \mathbb{Z}$$
, $\log_{10}(10^n) = n$ et $\log_2(2^n) = n$.

Fonctions puissances

2.1 Définition de a^b

Définition 2.1 — Puissances entières. Soit n un entier naturel. On pose,

$$\forall x \in \mathbb{R}, \ x^n = \underbrace{x \times x \times \cdots \times x}_{n \text{ fois}}$$
 et $\forall x \in \mathbb{R}^*, \ x^{-n} = \frac{1}{x^n}$

Par convention, pour tout $x \in \mathbb{R}$, $x^0 = 1$.

En utilisant les propriétés du logarithme, on obtient que, pour tout $n \in \mathbb{Z}$,

$$\forall x \in \mathbb{R}^*, \quad x^n = \exp(\ln(x^n)) = \exp(n\ln(x))$$

Cela permet de donner un sens aux puissances non entières.

Définition 2.2 — Puissances réelles. Soit a un réel. On pose,

$$\forall x > 0, \qquad x^a = \exp(a \ln(x))$$

La puissance $\frac{1}{2}$ coincide avec la fonction racine carrée. La puissance -1 coincide avec la puissance inverse. Les règles de calculs, sont les mêmes pour les puissances entières et pour les puissances réelles : seul le domaine de validité des relations change, une puissance réelle étant définie uniquement pour les entiers strictement positifs.

Proposition 2.3 — Règles de calcul sur les puissances. Soient $(x,y) \in (\mathbb{R}_+^*)^2$ et $(a,b) \in \mathbb{R}^2$. On a

a)
$$x^a \times x^b = x^{a+b}$$

b)
$$(x^a)^b = x^{a \times b}$$

c)
$$\frac{x^a}{x^b} = x^{a-b}$$

d)
$$(x \times y)^a = x^a \times y^a$$

e)
$$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$$
 f) $x^{-a} = \frac{1}{x^a}$

f)
$$x^{-a} = \frac{1}{x^a}$$

Exemple 2.4 Calculer les puissances suivantes.

a)
$$2^{\frac{1}{3}}2^{\frac{1}{4}} =$$

b)
$$(5^{\frac{1}{4}})^4 =$$

c)
$$2^{\frac{1}{4}}3^{\frac{1}{4}} =$$

d)
$$\left(\frac{3}{8}\right)^{\frac{1}{3}} =$$

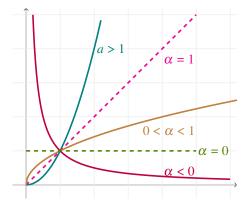
e) Pour tout
$$a \in \mathbb{R}$$
, $1^a =$

f) Pour tout
$$x > 0$$
, $x^0 =$

2.2 Fonctions puissances (entières et réelles)

Définition 2.5 Soit $a \in \mathbb{R}$. On définit la fonction **puissance** a par

$$\begin{array}{ccc}
\mathbb{R}_{+}^{*} & \to & \mathbb{R} \\
x & \mapsto & x^{a} = \exp(a \ln(x))
\end{array}$$



Une fonction puissance réelle n'est définie que pour des valeurs strictement positives à cause de la présence du logarithme dans sa définition. Cependant, certaines fonctions puissances s'étendent naturellement à un domaine plus large.

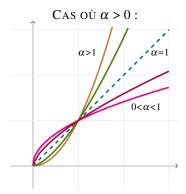
Fonction	Domaine de définition
$x \mapsto x^2$	
$x \mapsto x^{\frac{1}{2}}$	
$x \mapsto x^{-1}$	

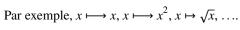
De manière générale,

- Si a > 0, la fonction $x \mapsto x^a$ peut être définie sur \mathbb{R}_+ au lieu de \mathbb{R}_+^* , en la prolongeant en 0 par la valeur 0. On parle de **prolongement par continuité** en 0.
- Si n ∈ N, la fonction x → xⁿ peut être définie sur R au lieu de R^{*}₊.
 Si n ∈ N, la fonction x → x⁻ⁿ peut être définie sur R^{*} au lieu de R^{*}₊.

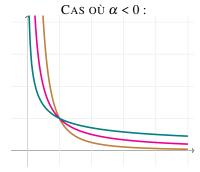
Proposition 2.6 Soit $a \in \mathbb{R}$. La fonction $f_a : x \mapsto x^a$ est définie, continue et dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \qquad f_a'(x) = ax^{a-1}$$





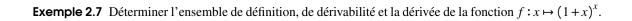
x	0	1	+∞
f(x)	0 —	11	+∞



 $\frac{1}{x}, x \longmapsto \frac{1}{x^2}, x \longmapsto \frac{1}{\sqrt{x}}.$ Par exemple, $x \vdash$

X	0	1	+∞
f(x)	+∞ .	1	0

M. BOURNISSOU 3/15



Proposition 2.8 Pour tout $a \in \mathbb{R}$ et tous x, y > 0, on a

$$x^a = y \qquad \Longleftrightarrow \qquad x = y^{\frac{1}{a}}$$

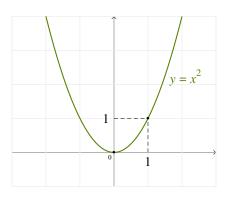
$$\Leftrightarrow$$

$$x = y^{\frac{1}{a}}$$

Exemple 2.9 Résoudre l'équation $x^4 = 16$ d'inconnue x > 0.

M. Bournissou 4/15

2.3 Racines n-ièmes



Exemple 2.10 Déterminer si la fonction carrée $x \mapsto x^2$ est bijective de I vers J pour les intervalles donnés ci-dessous.

Départ I	Arrivée J	Bij. de I vers J ?
\mathbb{R}	\mathbb{R}	
\mathbb{R}	\mathbb{R}_{+}	
\mathbb{R}_{+}	\mathbb{R}_{+}	
\mathbb{R}_{-}	\mathbb{R}_+	

Définition 2.11 Soit $n \in \mathbb{N}$. La fonction $x \mapsto x^n$ réalise une bijection de

a) \mathbb{R}_+ sur \mathbb{R}_+ si n est pair,

b) \mathbb{R} sur \mathbb{R} si n est impair.

Sa bijection réciproque est appelée racine *n*-ième.

a) Si *n* est pair :

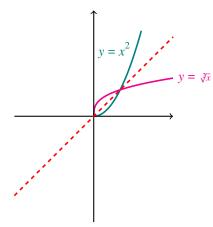
$$\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$$

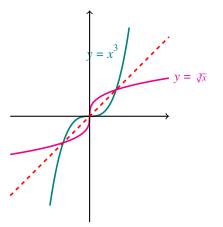
b) Si *n* est impair :

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sqrt[n]{x} \end{array}$$

Proposition 2.12 Pour tout $n \in \mathbb{N}^*$,

$$\forall x > 0, \qquad \sqrt[n]{x} = x^{\frac{1}{n}}$$





Exemple 2.13 Calculer les racines n-ièmes suivantes.

- a) $\sqrt[3]{8} =$
- b) $\sqrt[3]{-8} =$
- c) $\sqrt[4]{81} =$
- d) $\sqrt[4]{-81}$

Proposition 2.14 — Composée puissance n et racine n-ième, cas n pair.

a) Pour tout
$$x \ge 0$$
, $(\sqrt[n]{x})^n = x$

b) Pour tout
$$x \ge 0$$
, $\sqrt[n]{x^n} = x$

De plus, pour tout $x, y \ge 0$, on a,

$$y^n = x \iff y = \sqrt[n]{x}$$

Exemple 2.15 Écrire les nombres suivants sous la forme $a\sqrt{b}$ avec a et b deux entiers naturels le plus petit possible.

a)
$$\sqrt{1300}$$

b)
$$5\sqrt{3} + 4\sqrt{75} - 3\sqrt{48}$$

Proposition 2.16 — Composée puissance n et racine n-ième, cas n impair.

a) Pour tout
$$x \in \mathbb{R}$$
, $(\sqrt[n]{x})^n = x$

b) Pour tout
$$x \in \mathbb{R}$$
, $\sqrt[n]{x^n} = x$

De plus, pour tout $x, y \in \mathbb{R}$, on a,

$$y^n = x$$
 \iff $y = \sqrt[n]{x}$

3 Fonctions hyperboliques: ch et sh

Définition 3.1

• On appelle fonction **cosinus hyperbolique**, notée ch la fonction définie sur $\mathbb R$ par

ch :
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{e^x + e^{-x}}{2}$

- On appelle fonction sinus hyperbolique, notée sh la fonction définie sur $\mathbb R$ par

sh :
$$\mathbb{R} \rightarrow \mathbb{R}$$

 $x \mapsto \frac{e^x - e^{-x}}{2}$

Proposition 3.2 — Relation fondamentale. Pour tout $x \in \mathbb{R}$, $\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$.

Proposition 3.3 — Propriétés de la fonction sh.

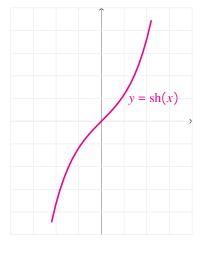
- 1. On a sh(0) = 0.
- 2. La fonction sh est impaire sur \mathbb{R} .
- 3. Les limites de la fonction sh en $\pm \infty$ sont les suivantes :

$$\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty \qquad \text{et} \qquad \lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$$

4. La fonction sh est dérivable sur \mathbb{R} et sa dérivée vaut,

$$\forall x \in \mathbb{R}, \quad \operatorname{sh}'(x) = \operatorname{ch}(x)$$

- 5. La fonction sh est strictement croissante sur \mathbb{R} .
- 6. La fonction sh n'est ni minorée ni majorée sur \mathbb{R} .



M. Bournissou 7/15

Proposition 3.4 — Propriétés de la fonction ch.

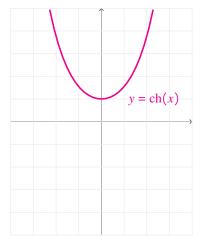
- 1. On a ch(0) = 1.
- 2. La fonction ch est paire sur \mathbb{R} .
- 3. Les limites de la fonction ch en $\pm \infty$ sont les suivantes :

$$\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty \qquad \text{et} \qquad \lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$$

4. La fonction chest dérivable sur \mathbb{R} et sa dérivée vaut,

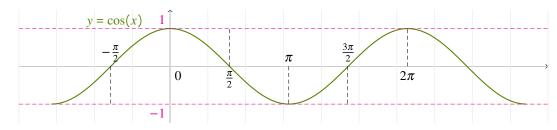
$$\forall x \in \mathbb{R}, \quad \operatorname{ch}'(x) = \operatorname{sh}(x)$$

- 5. La fonction che st décroissante sur $]-\infty,0]$ et croissante sur $[0,+\infty[$.
- 6. La fonction che st minorée par 1 sur \mathbb{R} et non majorée.



4 Fonctions circulaires réciproques : Arcsin, Arccos, Arctan

4.1 Arcsin



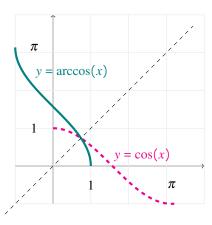
Exemple 4.1 Déterminer si la fonction cosinus est bijective de *I* vers *J* pour les intervalles donnés ci-dessous.

Intervalle de départ I	Intervalle d'arrivée J	Bijective de <i>I</i> vers <i>J</i> ?
\mathbb{R}	\mathbb{R}	
\mathbb{R}	[-1,1]	
$[0,\pi]$	\mathbb{R}	
$[0,\pi]$	[-1,1]	
$[\pi, 2\pi]$	[-1,1]	

M. BOURNISSOU 8/15

Définition 4.2 La fonction **arc cosinus**, notée arccos, est la bijection réciproque de la fonction cosinus sur l'intervalle $[0,\pi]$.

$$arccos$$
: $\begin{bmatrix} -1,1 \end{bmatrix} \rightarrow \begin{bmatrix} 0,\pi \end{bmatrix}$
 $x \mapsto arccos(x)$



Ainsi, par construction, pour tout $x \in [-1,1]$, $\theta = \arccos(x)$ est l'unique angle $\theta \in [0,\pi]$ dont le cosinus vaut x, c'est-à-dire $\cos(\theta) = x$.

Exemple 4.3 Déterminer l'image des valeurs suivantes par la fonction arccos.

arccos(0) =	
$\arccos\left(\frac{\sqrt{2}}{2}\right) =$	
arccos(-1) =	
arccos(1) =	

M. Bournissou 9/15

Proposition 4.4 — Composée de cos et arccos.

a) Pour tout $x \in [-1,1]$, $\cos(\arccos(x)) = x$ b) Pour tout $x \in [0,\pi]$, $\arccos(\cos(x)) = x$.

De plus, pour tout $y \in [-1, 1]$ et $x \in [0, \pi]$,

$$y = \cos(x)$$
 \iff $x = \arccos(y)$

Il faut faire très attention aux domaines de validité des relations précédentes. En effet,

$$\arccos\left(\cos\left(-\frac{\pi}{3}\right)\right) =$$

Exemple 4.5 Montrer que,

$$\forall x \in [-1, 1], \quad \sin(\arccos(x)) = \sqrt{1 - x^2}$$

Proposition 4.6 — Dérivée de arccos. La fonction arccos est continue et strictement décroissante sur [-1,1], dérivable sur]-1,1[et

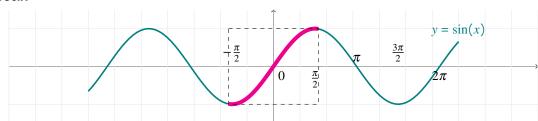
$$\forall x \in]-1,1[, \quad \arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$$

De manière générale, si u est dérivable sur un intervalle I et à valeurs dans]-1,1[, alors la fonction $x \mapsto \arccos(u(x))$ est dérivable sur I et sa dérivée est

$$x \mapsto -\frac{u'(x)}{\sqrt{1 - u(x)^2}}$$

M. BOURNISSOU 10/15

4.2 Arcsin



Définition 4.7 La fonction arc sinus, notée arcsin, est la bijection réciproque de la fonction sinus sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

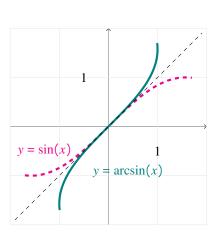
$$\begin{array}{cccc} \arcsin & : & [-1,1] & \rightarrow & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ & x & \mapsto & \arcsin(x) \end{array}$$

Démonstration. On sait que

- L'ensemble $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est un intervalle La fonction sin est **continue** sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- La fonction sin est **strictement croissante** sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Ainsi, d'après le théorème de la bijection,

 $\sin \text{ r\'ealise une bijection de } \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \text{ vers } f\left(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right) = \left[-1, 1 \right]$

et on note \arcsin : $[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sa bijection réciproque.



Ainsi, par construction, pour tout $x \in [-1, 1]$, $\theta = \arcsin(x)$ est l'unique angle $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ dont le sinus vaut x, c'est-à-dire $sin(\theta) = x$.

Exemple 4.8 Déterminer l'image des valeurs suivantes par la fonction arcsin.

arcsin(0) =	
$\arcsin\left(\frac{\sqrt{2}}{2}\right) =$	
arcsin(-1) =	
$\arcsin\left(\frac{1}{2}\right) =$	

Proposition 4.9 — Composée de sin et arcsin.

- a) Pour tout $x \in [-1, 1]$, $\sin(\arcsin(x)) = x$ b) Pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\arcsin(\sin(x)) = x$.

De plus, pour tout $y \in [-1, 1]$ et $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$y = \sin(x)$$
 \iff $x = \arcsin(y)$

Proposition 4.10 — Dérivée de arcsin. La fonction arcsin est continue et strictement croissante sur [-1, 1], dérivable sur]-1, 1[et

$$\forall x \in]-1,1[, \quad \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

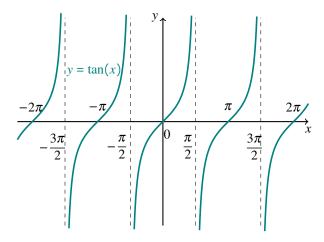
De manière générale, si u est dérivable sur un intervalle I et à valeurs dans]-1,1[, alors la fonction $x \mapsto \arcsin(u(x))$ est dérivable sur I et sa dérivée est

$$x \mapsto \frac{u'(x)}{\sqrt{1 - u(x)^2}}$$

Exercice 4.11 Montrer que,

$$\forall x \in [-1, 1], \quad \arccos(x) + \arcsin(x) = \frac{\pi}{2}$$

4.3 Arctan

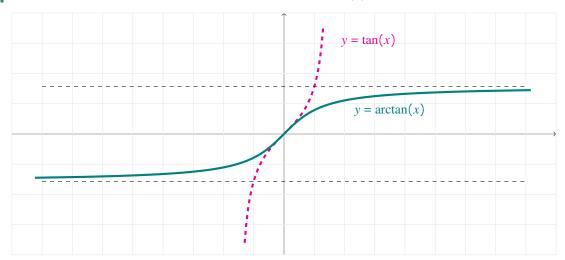


On peut montrer, grâce au **théorème de la bijection**, que la fonction tangente, réalise une bijection de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ sur \mathbb{R} . Ce qui conduit à la définition suivante.

M. Bournissou 13/15

Définition 4.13 La fonction **arc tangente**, notée arctan, est la bijection réciproque de la fonction tangente sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\begin{array}{cccc} \arctan & : & \mathbb{R} & \rightarrow & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ & x & \mapsto & \arctan(x) \end{array}$$



Ainsi, par construction, pour tout $x \in [-1, 1]$, $\theta = \arctan(x)$ est l'unique angle $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ dont la tangente vaut x, c'est-à-dire $\tan(\theta) = x$.

Exemple 4.14 Déterminer l'image des valeurs suivantes par la fonction arcsin.

$$\arctan(1) =$$

$$\arctan(-1) =$$

$$\arctan\left(\frac{1}{\sqrt{3}}\right) =$$

Proposition 4.15 — Composée de sin et arcsin.

- a) Pour tout $x \in \mathbb{R}$, tan(arctan(x)) = x
- b) Pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\arctan(\tan(x)) = x$.

De plus, pour tout $y \in \mathbb{R}$ et $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$,

$$y = \tan(x)$$
 \iff $x = \arctan(y)$

Proposition 4.16 La fonction arctan est impaire (sur \mathbb{R}).

Proposition 4.17 — Dérivée de arcsin. La fonction arctan est continue, strictement croissante et dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad \arctan'(x) = \frac{1}{1+x^2}$$

De manière générale, si u est dérivable sur un intervalle I, alors la fonction $x \mapsto \arctan(u(x))$ est dérivable sur I et sa dérivée est

$$x \mapsto \frac{u'(x)}{1 + u(x)^2}$$

Preuve du caractère dérivable.

Montrons que arctan est dérivable sur $\mathbb R$ et calculons sa dérivée.

- La fonction tan est bijective de]-π/2, π/2 [sur ℝ.
 La fonction tan est dérivable sur]-π/2, π/2 [.
 La dérivée de tan (qui est x → 1 + tan²(x) ou encore x → 1/cos²(x)) ne s'annule pas sur]]-π/2, π/2 [.
 Alors, (cf Proposition 2.10 du Chapitre 4), la fonction arctan est dérivable sur ℝ et sa dérivée vaut

$$\forall x \in \mathbb{R}, \qquad \arctan'(x) = \frac{1}{\tan'(\arctan(x))} = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}$$

en utilisant l'Exemple 4.5.

M. Bournissou 15/15