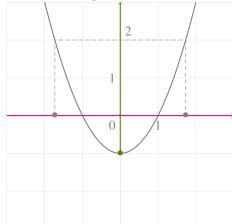
DM₁

Exercice 1 – Fonctions bijectives. On considère dans cette exercice la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \qquad f(x) = x^2 - 1$$

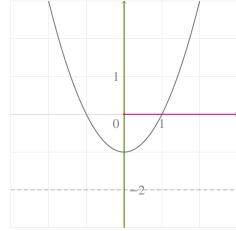
1. À l'aide du graphe ci-dessous, justifier que la fonction f n'est pas bijective de ℝ dans [-1,+∞[On placera l'ensemble de définition et l'ensemble d'arrivée sur les graphes, et on rajoutera les constructions nécessaires à la résolution de cette question. Ce schéma doit s'accompagner d'une phrase ou deux d'explications.



La fonction f n'est pas bijective de $\mathbb R$ dans $[-1,+\infty[$ car, par exemple, l'élément $2\in[-1,+\infty[$ admet deux antécédents par f dans $\mathbb R$ qui sont $\sqrt{3}$ et $-\sqrt{3}$. En effet, pour $x\in\mathbb R$,

$$f(x) = 2 \iff x^2 - 1 = 2$$
$$\iff x^2 = 3$$
$$\iff x = \sqrt{3} \text{ ou } x = -\sqrt{3}$$

2. À l'aide du graphe ci-dessous, justifier que la fonction f n'est pas bijective de $[0, +\infty[$ dans \mathbb{R} On placera l'ensemble de définition et l'ensemble d'arrivée sur les graphes, et on rajoutera les constructions nécessaires à la résolution de cette question. Ce schéma doit s'accompagner d'une phrase ou deux d'explications.



La fonction f n'est pas bijective de $[0, +\infty[$ dans $\mathbb{R}]$ car, par exemple, l'élément $-2 \in \mathbb{R}$ n'admet pas d'antécédents par f dans $[0, +\infty[$ (ni dans \mathbb{R} d'ailleurs). En effet, pour $x \in [0, +\infty[$,

$$f(x) = -2 \iff x^2 - 1 = -2$$
$$\iff x^2 = -4$$

qui n'admet pas de solution dans \mathbb{R} et donc pas dans $[0, +\infty[$.

3. Montrer que la fonction f est bijective de $[0, +\infty[$ dans $[-1, +\infty[$ et déterminer sa bijection réciproque.

Montrons que la fonction f est bijective de $[0, +\infty[$ dans $[-1, +\infty[$, c'est-à-dire montrons que

$$\forall y \in [-1, +\infty[, \exists! x \in [0, +\infty[, f(x) = y]]$$

Soit $y \in [-1, +\infty[$. On sait que, pour tout $x \in [0, +\infty[$,

$$y = f(x) \iff y = x^2 - 1$$

 $\iff x^2 = y + 1$
 $\iff x = \sqrt{y + 1} \text{ ou } x = -\sqrt{y + 1} \text{ (car } y \ge -1)$
 $\iff x = \sqrt{y + 1} \text{ (car } x \ge 0)$

Donc, pour tout $y \in [-1, +\infty[$, l'équation y = f(x) admet une unique solution dans $[0, +\infty[$. Ainsi, l'application f est bijective de $[0, +\infty[$ vers $[-1, +\infty[$.] et sa bijection réciproque est donnée par

$$f^{-1}: \begin{bmatrix} -1, +\infty \begin{bmatrix} & \longrightarrow & [0, +\infty [\\ y & \longmapsto & \sqrt{y+1} \end{bmatrix} \end{bmatrix}$$

Exercice 2 – Nombres complexes. Dans cet exercice, on souhaite résoudre deux équations polynomiales (une de degré deux et une de degré trois).

Partie 1. Une équation de degré 2.

1. Déterminer les racines carrées du nombre complexe 12 + 16i.

On cherche à résoudre l'équation

$$\delta^2 = 12 + 16i$$

d'inconnue $\delta \in \mathbb{C}$. Soit $\delta = x + iy$ avec $(x, y) \in \mathbb{R}^2$. On a

$$\delta^{2} = 12 + 16i \iff \begin{cases} \delta^{2} = 12 + 16i \\ |\delta|^{2} = |12 + 16i| = \sqrt{144 + 256} = \sqrt{400} = 20 \end{cases}$$

$$\iff \begin{cases} x^{2} - y^{2} + 2ixy = 12 + 16i \\ x^{2} + y^{2} = 20 \end{cases}$$

$$\iff \begin{cases} x^{2} - y^{2} = 12 \\ 2xy = 16 \\ x^{2} + y^{2} = 20 \end{cases}$$

$$\iff \begin{cases} 2x^{2} = 32 \\ 2y^{2} = 8 \\ xy > 0 \end{cases}$$

$$\iff \begin{cases} x^{2} = 16 \\ y^{2} = 4 \\ xy > 0 \end{cases}$$

$$\iff \begin{cases} x = 4 \\ y = 2 \end{cases} \text{ ou } \begin{cases} x = -4 \\ y = -2 \end{cases}$$

Les racines carrées de 12 + 16i sont donc $\boxed{4 + 2i}$ et $\boxed{-4 - 2i}$.

* Vérification.

$$(4+2i)^2 = 16+16i-4=12+16i$$

2. ♥ Résoudre dans ℂ l'équation

$$z^{2} + (6-2i)z + (5-10i) = 0$$

On notera z_1 et z_2 les solutions obtenues.

On est face à une équation de second degré dont le discriminant vaut

$$\Delta = \left(6 - 2i\right)^2 - 4 \times \left(5 - 10i\right) = 36 - 24i - 4 - 20 + 40i = 12 + 16i = \left(4 + 2i\right)^2 \neq 0$$

d'après la question précédente. Donc, l'équation admet deux solutions complexes données par

$$z_1 = \frac{-6 + 2i - (4 + 2i)}{2} = \boxed{-5}$$
$$z_2 = \frac{-6 + 2i + (4 + 2i)}{2} = \boxed{-1 + 2i}$$

* Vérification.

$$(-5)^{2} + (6-2i)(-5) + (5-10i) = 25 - 30 + 10i + 5 - 10i = 0$$

$$(-1+2i)^{2} + (6-2i)(-1+2i) + 5 - 10i = 1 - 4i - 4 - 6 + 12i + 2i + 4 + 5 - 10i = 0$$

3. Vérifier que les résultats trouvés à la question précédente sont bien cohérents avec les relations coefficients-racines.

On peut remarquer, en utilisant les solutions de la question précédente que

$$z_1 + z_2 = -5 - 1 + 2i = -6 + 2i = -\frac{6 - 2i}{1}$$
$$z_1 z_2 = 5 - 10i = \frac{5 - 10i}{1}$$

Ainsi, les relations coefficients-racines sont bien vérifiées

Partie 2. Une équation de degré 3. On cherche maintenant à résoudre dans \mathbb{C} l'équation (E) suivante :

(E)
$$z^3 + (6-7i)z^2 - (5+40i)z - (50+25i) = 0$$

On pose

$$\forall z \in \mathbb{C}, \qquad P(z) = z^3 + (6 - 7i)z^2 - (5 + 40i)z - (50 + 25i)$$

Soit b un nombre réel.

4. \triangle Écrire sous forme algébrique les deux nombres complexes $(ib)^2$ et $(ib)^3$. Préciser si ce sont des nombres réels ou imaginaires purs.

Soit $b \in \mathbb{R}$. On a,

$$(ib)^{2} = i^{2}b^{2} = -b^{2} \in \mathbb{R}.$$

$$(ib)^{3} = i^{3}b^{3} = -ib^{3} \in i\mathbb{R}.$$

5. Montrer que P(ib) = 0 si et seulement si b est une solution (réelle) de deux équations polynomiales à coefficients réels.

Soit $b \in \mathbb{R}$. On a,

$$P(ib) = (ib)^{3} + (6-7i)(ib)^{2} - (5+40i)(ib) - (50+25i)$$

$$= -ib^{3} - (6-7i)b^{2} - 5ib + 40b - 50 - 25i$$

$$= -ib^{3} - 6b^{2} + 7ib^{2} - 5ib + 40b - 50 - 25i$$

$$= -6b^{2} + 40b - 50 + i(-b^{3} + 7b^{2} - 5b - 25)$$

Ainsi, en identifiant parties réelles et imaginaires, on obtient que

$$P(ib) = 0 \iff \begin{cases} -6b^2 + 40b - 50 = 0\\ -b^3 + 7b^2 - 5b - 25 = 0 \end{cases}$$

6. Résoudre dans \mathbb{R} l'équation $-3x^2 + 20x - 25 = 0$. On note $b_0 \in \mathbb{Z}$ la solution entière obtenue.

On est face à une équation de second degré dont le discriminant vaut

$$\Delta = 400 - 300 = 100 > 0$$

Ainsi, l'équation admet deux solutions réelles données par,

$$x_1 = \frac{-20 - 10}{2 \times (-3)} = \frac{30}{6} = \boxed{5}$$
$$x_2 = \frac{-20 + 10}{2 \times (-3)} = \boxed{\frac{5}{3}}$$

On note b_0 la solution entière de cette équation, soit $b_0 = 5 \in \mathbb{Z}$

Vérification.

$$-3 \cdot 5^{2} + 20 \cdot 5 - 25 = -75 + 100 - 25 = 0$$

$$-3\left(\frac{5}{3}\right)^{2} + 20 \times \frac{5}{3} - 25 = -\frac{25}{3} + \frac{100}{3} - \frac{75}{3} = 0$$

7. Avec ce qui précède, justifier que ib_0 est une racine de P.

D'après la question 5, pour tout $b \in \mathbb{R}$,

$$P(ib) = 0 \iff \begin{cases} -6b^2 + 40b - 50 = 0\\ -b^3 + 7b^2 - 5b - 25 = 0 \end{cases}$$

Or,

$$-6b_0^2 + 40b_0 - 50 = 2\left(-3b_0^2 + 20b_0 - 25\right) = 0$$

puisque b_0 , par construction, est une solution de 'équation $-3x^2 + 20x - 25 = 0$. De plus, on peut calculer que

$$-b_0^3 + 7b_0^2 - 5b_0 - 25 = -5^3 + 7 \times 5^2 - 5 \times 5 - 25 = 25 \times (-5 + 7 - 1 - 1) = 0$$

Ainsi,

$$P(ib_0) = 0$$

soit ib_0 est une racine de P.

8. Déterminer les trois nombres complexes a, b et c tels que

$$\forall z \in \mathbb{C}, \qquad P(z) = (z - ib_0)(az^2 + bz + c).$$

D'après la question précédente, $ib_0 = i5$ (cf question 6) est une racine de P ainsi, il existe a, b et c tels que

$$\forall z \in \mathbb{C}, \qquad P(z) = (z - ib_0)(az^2 + bz + c) = (z - i5)(az^2 + bz + c)$$

En regardant le coefficient de plus haut degré, on trouve que a = 1. En regardant le terme constant, on trouve que c = -10i + 5. Enfin, le terme «devant le z^2 » de P vaut 6 - 7i et en développant le terme «devant le z^2 » vaut $(b - 5i)z^2$. Donc on veut que

$$6 - 7i = b - 5i$$

et donc, on trouve que b = 6 - 2i. Ainsi, finalement, on a,

$$\forall z \in \mathbb{C}, \qquad P(z) = (z - i5)(z^2 + (6 - 2i)z + 5 - 10i)$$

9. En déduire les solutions de l'équation (E).

En utilisant la factorisation de la question précédente, on a donc,

$$P(z) = 0$$
 \iff $z - 5i = 0$ ou $z^2 + (6 - 2i)z + (5 - 10i) = 0$

Or d'après la Partie 1 de l'exercice, l'équation $z^2 + (6-2i)z + (5-10i) = 0$ admet deux solutions qui valent -5 et -1 + 2i. Donc, finalement,

$$P(z) = 0$$
 \iff $z = 5i$ ou $z = -5$ ou $z = -1 + 2i$

L'équation (E) admet trois solutions qui valent,

$$z = 5i$$
 ou $z = -5$ ou $z = -1 + 2i$

10. Démontrer que deux des solutions de (E) appartiennent à un même cercle de centre 0 mais pas la troisième.

On a,

$$|5i| = 5$$
$$|5| = 5$$

donc, les deux solutions, 5i et 5 appartiennent au même cercle de centre (0,0) et de rayon 5. Mais la troisième solution, -1 + 2i n'appartient pas à ce cercle car

$$|-1+2i| = \sqrt{(-1)^2 + 2^2} = \sqrt{5} \neq 5$$