DM 2

À rendre pour le mardi 4 novembre (facultatif)

Exercice 1 – QCM sur les nombres complexes. Pour chaque question, sélectionner la(les) bonne(s) réponse(s) en **justifiant votre réponse**.

1. Le nombre complexe $\frac{i-1}{i+1}$ vaut

a)
$$(i-1)^2$$

b)
$$1^2 - i^2$$

2. Les racines du polynôme $x \mapsto x^2 - 2\cos(\theta)x + 1$ sont

b)
$$e^{i\theta}$$
 et $e^{-i\theta}$

c)
$$e^{i\theta}$$
 et $\frac{1}{e^{i\theta}}$

d)
$$\cos \theta \, \cot \sin \theta$$

3. Si $\omega \in \mathbb{U}_n$ alors

a)
$$\omega^3 \in \mathbb{U}_{3n}$$

b)
$$\omega^3 \in \mathbb{U}_n$$

c)
$$\omega^3 \in \mathbb{U}_{\frac{n}{3}}$$
 si *n* est un multiple de 3

d)
$$\omega^{3} = 1$$

4. L'ensemble des nombres complexes z tels que Re(z) = Im(z) est décrit par l'équation

a)
$$|z+1| = |z-i|$$

b)
$$|z-1| = |z-i|$$

c)
$$|z+1| = |z+i|$$

d)
$$|z-1| = |z+i|$$

Exercice 2 - Nombres complexes. On considère les nombres complexes

$$z_1 = 1 + i$$
 $z_2 = \frac{1}{2}(\sqrt{6} + i\sqrt{2})$ et $Z = z_1 z_2$

- 1. Donner la forme algébrique de Z.
- 2. Déterminer une forme trigonométrique pour chacun des complexes z_1, z_2 et Z.
- 3. En utilisant les deux manières d'écrire le nombre complexes Z, en déduire les valeurs de

$$\cos\left(\frac{5\pi}{12}\right)$$
 et $\sin\left(\frac{5\pi}{12}\right)$

4. En déduire qu'il existe A et φ deux réels tels que

$$\forall x \in \mathbb{R}, \qquad \frac{\sqrt{2} - \sqrt{6}}{4} \cos(x) - \frac{\sqrt{2} + \sqrt{6}}{4} \sin(x) = A \cos(x - \varphi)$$

5. En déduire les solutions de l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\frac{\sqrt{2} - \sqrt{6}}{4}\cos(x) - \frac{\sqrt{2} + \sqrt{6}}{4}\sin(x) = \frac{\sqrt{12}}{4}$$

6. Préciser les solutions qui sont dans l'intervalle $[0, 2\pi]$ et les représenter sur le cercle trigonométrique.

Exercice 3 – Calcul d'une somme. Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n (k \times k!)$.

- 1. Calculer S_1 , S_2 et S_3 .
- 2. Montrer que pour tout $k \in \mathbb{N}^*$,

$$k \times k! = (k+1)! - k!$$

- 3. En déduire l'expression de S_n en fonction de n.
- 4. Vérifier que la formule donnée en Question 3 coincide avec les résultats de la Question 1.