Samedi 20 septembre, de 8h à 10h

Les règles à respecter sont les suivantes.

- ① Aucun document n'est autorisé. L'utilisation de toute calculatrice et de tout matériel électronique est interdite.
- 2 Les candidat·e·s sont invité·e·s à **encadrer** dans la mesure du possible leurs résultats.
- 3 Pour augmenter la **lisibilité** des calculs, dans la mesure du possible, les égalités successives seront présentées en colonne (et non pas en ligne) avec les différents symboles = bien alignés.
- Les pages doivent être numérotées en indiquant le nombre de pages total (par exemple, 1/12, 2/12, ect.)
- ⑤ L'usage du blanco, souris, effaceurs et stylos frixion interdit : il faut **rayer proprement** (à la règle) en cas d'erreur.

Exercice 1 - Questions de cours. Les deux questions de cet exercice sont indépendantes.

1. Pour chacune des fonctions usuelles suivantes :

a)
$$x \mapsto \exp(x)$$

b)
$$x \mapsto \ln(x)$$

c)
$$x \mapsto x^2$$

d)
$$x \mapsto \sqrt{x}$$

donner les informations suivantes. Aucune justification n'est demandée.

- Donner l'ensemble de définition de la fonction.
- Tracer l'allure de sa courbe.
- Donner la dérivée de la fonction.
- Dire si la fonction est paire/impaire/ni l'un ni l'autre.
- Dire si la fonction admet des majorants/minorants et si oui, préciser leurs valeurs.
- 2. Soient $x, a, b \in \mathbb{R}$. Recopier sur votre copie et compléter les formules de trigonométrie suivantes. *Aucune justification n'est demandée*.

a)
$$\cos(x + \pi) = ...$$

b)
$$\sin\left(\frac{\pi}{2} - x\right) = \dots$$

c)
$$\sin(a+b) = ...$$

d)
$$cos(a)cos(b) = ...$$

Exercice 2 – Étude d'une fonction. On considère la fonction f définie par,

pour tout
$$x \in \mathbb{R}$$
, $f(x) = \frac{1}{2}\sin(2x) - \sin(x)$.

On note C_f sa courbe représentative dans un repère orthonormé.

- 1. Déterminer les valeurs des images de 0, $\frac{2\pi}{3}$ et π par f.
- 2. Montrer que *f* est impaire.
- 3. Montrer que f est 2π -périodique.
- 4. Justifier qu'il suffit d'étudier f sur l'intervalle $I = [0, \pi]$ pour connaître le comportement de f sur \mathbb{R} .
- 5. Démontrer que,

pour tout
$$x \in \mathbb{R}$$
, $f'(x) = 2\cos^2(x) - \cos(x) - 1$

- 6. Résoudre l'équation $2x^2 x 1 = 0$ d'inconnue $x \in \mathbb{R}$.
- 7. Justifier que

pour tout
$$x \in \mathbb{R}$$
, $2x^2 - x - 1 = (x - 1)(2x + 1)$

- 8. En déduire le tableau de signe du polynôme $x \mapsto 2x^2 x 1$.
- 9. Résoudre sur $[0, \pi]$ l'inéquation $2\cos(x) + 1 \ge 0$.
- 10. Déduire des questions précédentes le tableau de variations de f sur $[0, \pi]$.
- 11. Donner les équations des tangentes de f en 0 et en π . On rappelle que l'équation de la tangente à la courbe représentative de f au point d'abscisse a est y = f'(a)(x-a) + f(a).
- 12. Tracer l'allure de la représentation graphique de f sur \mathbb{R} . On fera apparaître les propriétés précédemment démontrées.
- 13. La fonction f admet-elle un maximum ? un minimum ?

Exercice 3 – Calcul de $\cos\left(\frac{\pi}{12}\right)$. Le but principal de cet exercice est de calculer $\cos\left(\frac{\pi}{12}\right)$ de trois manières différentes.

- 1. Méthode 1.
 - (a) Soient a et b dans \mathbb{R} . Écrire $\cos(a-b)$ en fonction de $\cos(a)$, $\cos(b)$, $\sin(a)$ et $\sin(b)$.
 - (b) En prenant $a = \frac{\pi}{3}$ et une valeur de b bien choisie, déterminer la valeur de $\cos\left(\frac{\pi}{12}\right)$.
- 2. Méthode 2.
 - (a) Montrer que,

pour tout
$$x \in \mathbb{R}$$
, $\sin(3x) = 3\sin(x) - 4\sin^3(x)$.

(b) En déduire que $s = \sin\left(\frac{\pi}{12}\right)$ est une solution de l'équation

(E)
$$4x^3 - 3x + \frac{\sqrt{2}}{2} = 0$$

- (c) Dans cette question, on cherche à résoudre l'équation (E).
 - i. Montrer que $\frac{\sqrt{2}}{2}$ est une solution de (E). ii. Montrer que

pour tout
$$x \in \mathbb{R}$$
, $4x^3 - 3x + \frac{\sqrt{2}}{2} = \left(x - \frac{\sqrt{2}}{2}\right)(4x^2 + 2\sqrt{2}x - 1)$

- iii. En déduire toutes les solutions de (E).
- (d) En déduire la valeur de $s = \sin\left(\frac{\pi}{12}\right)$.
- (e) Retrouver alors que

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$

- 3. Méthode 3.
 - (a) Soit $x \in \mathbb{R}$. Écrire $\sin(4x) + \sin(2x)$ comme un produit de cosinus et sinus.
 - (b) En déduire à nouveau la valeur de $\cos\left(\frac{\pi}{12}\right)$.
- 4. Calculer $\cos\left(\frac{5\pi}{12}\right)$ et $\cos\left(\frac{2024\pi}{12}\right)$.

Exercice 4 – Bonus (hors barême). Montrer que toute fonction $f: \mathbb{R} \to \mathbb{R}$ peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.