9. Calcul d'une primitive

Pour bien démarrer : savoir «remonter» l'opération de dérivation

\mathcal{D}_f	Fonction f	$\mathcal{D}_{f^{l}}$	Dérivée f^{\prime}
			$x \mapsto 0$
			$x \mapsto \alpha x^{\alpha - 1}$
			$x \mapsto \frac{1}{x}$
			$x \mapsto e^x$
			$x \mapsto -\sin(x)$
			$x \mapsto \cos(x)$
			$x \mapsto 1 + \tan^2(x)$ ou $x \mapsto \frac{1}{\cos^2(x)}$
			$x \mapsto \frac{1}{1+x^2}$
			$x \mapsto \frac{1}{\sqrt{1-x^2}}$
			$x \mapsto \operatorname{sh}(x)$
			$x \mapsto \mathrm{ch}(x)$

Dans tout ce chapitre, I désigne un intervalle de \mathbb{R} et \mathbb{K} désigne l'ensemble \mathbb{R} ou \mathbb{C} .

1 Définition de la notion de primitive

Définition 1.1 Soit $f: I \to \mathbb{K}$ une fonction. On dit que $F: I \to \mathbb{K}$ est <u>une</u> **primitive de** f **sur** I si

- ① F est dérivable sur I
- ② Pour tout $x \in I$, F'(x) = f(x)

M. BOURNISSOU 1/10

Exemple 1.2 Montrons que la fonction $F: x \mapsto x \ln(x) - x$ est <u>une</u> primitive de la fonction $f: x \mapsto \ln(x)$ sur $]0, +\infty[$.

Exemple 1.3 Montrons que les fonctions $F_1: x \mapsto x^2$ et $F_2: x \mapsto x^2 + 1$ sont des primitives de la fonction $f: x \mapsto 2x$ sur \mathbb{R} .

2 Existence et non unicité

Proposition 2.1 — Existence d'une primitive. Toute fonction **continue** sur un **intervalle** admet au moins une **primitive** sur cet intervalle.

Il faut se placer sur un intervalle (un ensemble de \mathbb{R} «sans trou») pour éviter les problèmes. En effet, si on considère la fonction f définie sur \mathbb{R}^* (qui n'est donc pas un intervalle) par,

$$\forall x \in \mathbb{R}^*, \qquad f(x) = \frac{1}{x},$$

alors,

- sur $]0, +\infty[$, f admet pour primitive
- sur $]-\infty,0[$, f admet pour primitive

Grâce à l'Exemple 1.3, on remarque qu'une même fonction peut admettre plusieurs primitives. Toutefois, ces primitives ne différent que d'une constante. Ainsi, on ne dit jamais «la primitive» mais toujours «<u>une</u> primitive» car il en existe une *infinité* (il suffit d'ajouter une constante pour obtenir une nouvelle primitive).

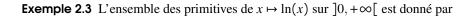
Proposition 2.2 — Infinité de primitives. Soit $f: I \to \mathbb{K}$ une fonction.

• Deux primitives F_1 et F_2 de f sur I sont égales à une **constante près**,

$$\exists c \in \mathbb{R}, \ \forall x \in I, F_1(x) = F_2(x) + c.$$

• Autrement dit, si F est une primitive de f sur I alors l'ensemble des primitives de f sur I est donné par $\{x \mapsto F(x) + c \mid c \in \mathbb{R}\}.$

M. BOURNISSOU 2/10



Proposition 2.4 — Unicité sous condition. Soit $f: I \to \mathbb{K}$ une fonction continue. Alors, pour tous $x_0 \in I$, $y_0 \in \mathbb{R}$, il existe une unique primitive F de f sur I vérifiant $F(x_0) = y_0$.

Exercice 2.5 Donner l'unique primitive de la fonction $x \mapsto \ln(x)$ sur $]0, +\infty[$ qui s'annule en 1.

Exercice 2.6 On admet que la fonction $F: x \mapsto \frac{x}{3} + \frac{2}{9} \ln(-3x + 2)$ est <u>une</u> primitive de la fonction $f: x \mapsto \frac{x}{3x-2}$ sur $I =]-\infty, \frac{2}{3}[$. En déduire <u>la primitive</u> de f sur f qui s'annule en f.

M. BOURNISSOU 3/10

3 Calcul de primitive

3.1 Primitives des fonctions usuelles

On ne précise pas ici l'ensemble de définition de <u>la fonction</u>, ni de sa primitive.

Fonction	<u>Une</u> primitive		
$x \mapsto x^{\alpha} \text{ avec } \alpha \neq 0$	$x \mapsto \frac{x^{\alpha+1}}{\alpha+1}$		
$x \mapsto \frac{1}{x}$	$x \mapsto \ln(x)$		
$x \mapsto \exp(ax) \text{ avec } a \in \mathbb{R}^*$	$x \mapsto \frac{1}{a} \exp(ax)$		
$x \mapsto \cos(ax) \text{ avec } a \in \mathbb{R}^*$	$x \mapsto \frac{1}{a}\sin(ax)$		
$x \mapsto \sin(ax) \text{ avec } a \in \mathbb{R}^*$	$x \mapsto -\frac{1}{a}\cos(ax)$		
$x \mapsto \operatorname{sh}(x)$	$x \mapsto \operatorname{ch}(x)$		

Fonction	<u>Une</u> primitive	
$x \mapsto \operatorname{ch}(x)$	$x \mapsto \operatorname{sh}(x)$	
$x \mapsto \frac{1}{1+x^2}$	$x \mapsto \arctan(x)$	
$x \mapsto \ln(x)$	$x \mapsto x \ln(x) - x$	
$x \mapsto 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$x \mapsto \tan(x)$	
$x \mapsto \tan(x)$	$x \mapsto -\ln(\cos(x))$	
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	$x \mapsto \arcsin(x)$	

Exemple 3.1

Fonction	<u>Une</u> primitive	Valable sur
$x \mapsto 1$		
$x \mapsto \cos(x)$		
$x \mapsto x^2$		
$x \mapsto \frac{1}{x}$		
$x \mapsto \frac{1}{x^2}$		

Fonction	<u>Une</u> primitive	Valable sur
$x \mapsto \sin(2x)$		
$x \mapsto \frac{1}{\sqrt{x}}$		
$x \mapsto e^x$		
$x \mapsto e^{2x}$		
$x \mapsto \operatorname{ch}(x)$		

Proposition 3.2 Soient $f,g:I\to\mathbb{K}$ et $F,G:I\to\mathbb{K}$ telles que F soit une primitive de f sur I et G soit une primitive de g sur I. Alors, pour tout $a,b\in\mathbb{R}$, aF+bG est une primitive de af+bg sur I.

M. Bournissou 4/10

Grâce à la *linéarité* de la notion de primitive et à partir des primitives des fonctions usuelles, on peut alors trouver des primitives de fonctions plus compliquées.

Exemple 3.3

Fonction	<u>Une</u> primitive	Valable sur
$x \mapsto \operatorname{ch}(x) - 5$		
$x \mapsto 3x^2 - 5x + 3$		
$x \mapsto \frac{1}{x} + \frac{2}{x^2}$		
$x \mapsto e^{2x} - 4e^{-2x}$		
$x \mapsto \cos(3x) + \frac{1}{1+x^2}$		
$x \mapsto \frac{1}{\sqrt{1-x^2}} + \sin\left(\frac{x}{2}\right)$		

3.2 Reconnaître la dérivée d'une composée

Proposition 3.4 Soient I et J deux intervalles de \mathbb{R} . Soient $u:I\to J$ une fonction dérivable sur I et $f:J\to\mathbb{R}$ une fonction continue sur I, dont une primitive est notée F. Alors <u>une</u> primitive de $x\mapsto u'(x)f(u(x))$ sur I est $x\mapsto F(u(x))$.

Les formes les plus courantes de dérivées de composées sont les suivantes.

Fonction	<u>Une</u> primitive	
$u'\exp(u)$	exp(u)	
$u'u^{\alpha}$ avec $\alpha \neq -1$	$\frac{u^{\alpha+1}}{\alpha+1}$	
$\frac{u'}{u}$	ln(u)	

Fonction	<u>Une</u> primitive	
$u'\cos(u)$	sin(u)	
$u'\sin(u)$	$-\cos(u)$	
$\frac{u'}{1+u^2}$	arctan(u)	

On ne sait pas primitiver directement des fonctions de la fonction $x \mapsto [u(x)]^n$, $x \mapsto \exp(u(x))$, etc. Il nous faut le «terme dérivé u'(x)» en facteur de ces quantités. Parfois, on est amené à forcer son apparition.

M. BOURNISSOU 5/10

Exemple 3.5

Fonction	Forme	<u>Une</u> primitive	Valable sur
$x \mapsto 2x \exp(x^2)$			
$x \mapsto \frac{2x}{1+x^2}$			
$x \mapsto 3(3x-5)^4$			

Fonction	«Forçage»	Forme	<u>Une</u> primitive	Valable sur
$x \mapsto \frac{1}{1 + (2x)^2}$				
$x \mapsto \frac{1}{3x+1}$				
$x \mapsto \frac{1}{(1-x)^2}$				

3.3 Primitive d'une fraction rationnelle simple

Pour déterminer la primitive d'une fonction rationnelle de la forme

$$x \mapsto \frac{1}{ax^2 + bx + c}$$

il faut commencer par factoriser le dénominateur, qui est un polynôme du second degré. Cette factorisation dépend du signe du discriminant Δ du polynôme $x \mapsto ax^2 + bx + c$.

M. Bournissou 6/10

a) Cas $\Delta = 0$ (le dénominateur admet une racine double)

Lorsque $\Delta = 0$, le polynôme $x \mapsto ax^2 + bx + c$ admet une unique racine que l'on peut noter x_0 . Dans ce cas là, le polynôme peut se factoriser sous la forme

$$\forall x \in \mathbb{R}, \quad ax^2 + bx + c = a(x - x_0)^2$$

Alors, la fraction rationnelle peut se mettre sous la forme

$$\forall x \in \mathbb{R} - \{x_0\}, \qquad \frac{1}{ax^2 + bx + c} = \frac{1}{a(x - x_0)^2}$$

On peut primitiver directement sur $]-\infty,x_0[$ et sur $]x_0,+\infty[$ en reconnaissant une forme composée usuelle :

$$\frac{u'}{u^2} = u'u^{-2} \xrightarrow{\text{prim.}} -\frac{1}{u}$$

Exemple 3.6 Déterminer une primitive de la fonction $f: x \mapsto \frac{1}{4x^2 + 4x + 1}$ sur $] - \frac{1}{2}, +\infty[$.

M. BOURNISSOU 7/10

b) Cas $\Delta > 0$ (le dénominateur admet deux racines réelles distinctes)

Lorsque $\Delta > 0$, le polynôme $x \mapsto ax^2 + bx + c$ admet deux racines réelles distinctes que l'on peut noter x_1 et x_2 . Dans ce cas là, le polynôme peut se factoriser sous la forme

$$\forall x \in \mathbb{R}, \qquad ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Alors, la fraction rationnelle peut se mettre sous la forme

$$\forall x \in \mathbb{R} - \{x_1\}, \qquad \frac{1}{ax^2 + bx + c} = \frac{1}{a(x - x_1)(x - x_2)}$$

Pour primitiver une telle fonction, il faut effectuer une décomposition en éléments simples. On trouve deux réels λ_1 et λ_2 telles que

$$\forall x \in \mathbb{R} - \{x_1, x_2\}, \qquad \frac{1}{ax^2 + bx + c} = \frac{\lambda_1}{x - x_1} + \frac{\lambda_2}{x - x_2}$$

 $\forall x \in \mathbb{R} - \{x_1, x_2\}, \qquad \frac{1}{ax^2 + bx + c} = \frac{\lambda_1}{x - x_1} + \frac{\lambda_2}{x - x_2}$ On peut primitiver directement sur $] - \infty, x_1[,]x_1, x_2[$ et sur $]x_2, +\infty[$ en reconnaissant une somme de deux formes composées usuelles :

$$\frac{u'}{u} \stackrel{\text{prim.}}{\leadsto} \ln(|u|)$$

Exemple 3.7 Déterminer une primitive de la fonction $f: x \mapsto \frac{1}{1-x^2}$ sur]-1,1[.

M. Bournissou 8/10

c) Cas Δ < 0 (le dénominateur n'admet pas de racines réelles)

Lorsque $\Delta < 0$, le polynôme $x \mapsto ax^2 + bx + c$ n'admet pas de racines réelles (mais admet deux racines complexes) Dans ce cas là, le polynôme peut se mettre sous la forme canonique

$$\forall x \in \mathbb{R}, \qquad ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + d$$

Alors, la fraction rationnelle peut se mettre sous la forme

$$\forall x \in \mathbb{R}, \qquad \frac{1}{ax^2 + bx + c} = \frac{1}{a\left(x + \frac{b}{2a}\right)^2 + d}$$

À quelques changements près, on peut se reconnaître une forme composée usuelle

$$\begin{array}{|c|c|}\hline \frac{u'}{1+u^2} & \overset{\text{prim.}}{\sim} & \arctan(u) \\ \hline \end{array}$$

Exemple 3.8 Déterminer une primitive de la fonction $f: x \mapsto \frac{1}{x^2 + 2x + 2}$ sur \mathbb{R} .

M. Bournissou 9/10

3.4 Primitives de $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$

Pour primitiver une fonction de la forme $x \mapsto e^{ax} \cos(bx)$, on remarque que

$$\forall x \in \mathbb{R}, \qquad e^{ax}\cos(bx) = \operatorname{Re}\left(e^{(a+ib)x}\right)$$

Puis, on calcule une primitive de la fonction exponentielle (complexe) et on en prend sa partie réelle.

Exemple 3.9 Déterminer une primitive de la fonction $f : x \mapsto e^x \cos(x)$ sur \mathbb{R} .

Pour primitiver une fonction de la forme $x \mapsto e^{ax} \sin(bx)$, on remarque que

$$\forall x \in \mathbb{R}, \qquad e^{ax} \sin(bx) = \operatorname{Im}\left(e^{(a+ib)x}\right)$$

Puis, on calcule une primitive de la fonction exponentielle (complexe) et on en prend sa partie imaginaire.

M. Bournissou 10/10