TD 10 - Calcul Matriciel

Exercice 1 - Écriture de matrices. Écrire en extension les deux matrices suivantes, puis donner leur taille et l'espace $\mathcal{M}_{n,m}(\mathbb{R})$ dans lequel elles vivent.

$$A = (i \times j)_{\substack{1 \le i \le 5 \\ 1 \le j \le 4}} \quad \text{et} \quad B = (\min(i, j))_{\substack{1 \le i \le 4 \\ 1 \le j \le 4}}$$

Exercice 2 – Opérations sur les matrices. On considère les deux matrices A et B données par

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$.

Calculer 3A - B, $2I_2 + A$ et 3(A - 2B).

Exercice 3 - Multiplication de matrices. Calculer les produits suivants

a)
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix}$ $\begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix}$

e)
$$\begin{pmatrix} -1 & 0 & 2 \end{pmatrix}$$
 $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ f) $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 & 2 \end{pmatrix}$

Exercice 4 - Multiplication de matrices. Soient

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ et } C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$

Montrer que AB = AC.

Exercice 5 - Calcul littéral avec les matrices. Soit $n \in \mathbb{N}^*$. Soient A, B et C trois matrices de $\mathcal{M}_n(\mathbb{K})$.

- 1. Développer ces expressions:
 - (a) A(B+C)
 - (b) (B+C)A
 - (c) $(A B)^2$
 - (d) (A B)(A + B)
 - (e) $A(A^2 + 2A + B + I_n)$.
- 2. Factoriser ces expressions:
 - (a) $A^2 + 3A + AB$
 - (b) $A^2 + 3A + BA$
 - (c) AB 2B
 - (d) $A^3 + 3A^2 2A$
 - (e) $A^2 2A$

Exercice 6 – Déterminer toutes les matrices qui commutent avec

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercice 7 – Transposée de matrices. Donner la transposée des trois matrices suivantes:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix}, B = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 & 2 \end{pmatrix}.$$

Exercice 8 - Puissances d'une matrice. Soient a, b et c des réels. On considère la matrice

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}.$$

Calculer, pour tout $n \in \mathbb{N}$, A^n .

Exercice 9 - Puissances d'une matrice. On considère la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Calculer, pour tout $n \in \mathbb{N}$, A^n .

Exercice 10 – Puissances d'une matrice. Soit $a \in \mathbb{R}$. On considère les matrices

$$U = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad M = \begin{pmatrix} 1 & a & a \\ a & 1 + \frac{a^2}{2} & \frac{a^2}{2} \\ -a & -\frac{a^2}{2} & 1 - \frac{a^2}{2} \end{pmatrix}$$

- 1. Calculer U^2 .
- 2. Trouver $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $M = \alpha I_3 + \beta U + \gamma U^2$.

Exercice 11 - Puissances d'une matrice. À l'aide du binôme de Newton, calculer les puissances des matrices A et B où

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 3 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix}$$

Exercice 12 – Puissances d'une matrice. Soit $x \in \mathbb{R}$. On pose

$$A(x) = \begin{pmatrix} ch(x) & sh(x) \\ sh(x) & ch(x) \end{pmatrix}$$

Calculer, pour tout $n \in \mathbb{N}$, $A(x)^n$. On pourra utiliser les matrices $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} et K = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$

Exercice 13 - Matrices inversibles, cas particuliers. Les matrices suivantes sont-elles inversibles ? Si oui, donner leur inverse.

a)
$$\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 4 & -1 \\ -8 & 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 d) $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$

d)
$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

e)
$$\begin{pmatrix} -2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$
 f) $\begin{pmatrix} 0 & 1 & 3 \\ 0 & 5 & -7 \\ 0 & 0 & 8 \end{pmatrix}$

$$f) \begin{pmatrix}
 0 & 1 & 3 \\
 0 & 5 & -7 \\
 0 & 0 & 8
 \end{pmatrix}$$

Exercice 14 – Matrices symétriques. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que $A^{T}A$ est une matrice symétrique.
- 2. Montrer que si A et B sont symétriques, alors A+B est symétrique.
- 3. Montrer que si B est symétrique alors $A^{T}B + BA$ est symétrique.

Exercice 15 – Matrices symétriques et antisymétriques. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On considère les matrices

$$S = \frac{1}{2}(A + A^{\top})$$
 et $T = \frac{1}{2}(A - A^{\top})$

1. Calculer S et T dans le cas particulier où

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

En déduire que S et T sont respectivement symétrique et antisymétrique.

2. Dans le cas général, montrer que S est symétrique, T est antisymétrique et que A = S + T.

Exercice 16 - Polynômes annulateurs.

1. On considère la matrice A suivante

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

- (a) Montrer que $A^3 A^2 + 2A + 11I_3 = 0_3$.
- (b) En déduire que *A* est inversible et donner son inverse.
- 2. On considère la matrice A suivante

$$A = \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$$

- (a) Montrer que $A^2 = 6A$.
- (b) En raisonnant par l'absurde, en déduire que A n'est pas inversible.

Exercice 17 – Polynômes annulateurs. Soit $x \in \mathbb{R}$. On pose

$$A(x) = \begin{pmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{pmatrix}$$

- 1. Calculer, pour tout $(x, y) \in \mathbb{R}^2$, A(x)A(y).
- 2. En déduire, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$, $A(x)^n$.
- 3. Déduire également de la question 1 que pour tout $x \in \mathbb{R}$, A(x) est inversible et calculer son inverse.

Exercice 18 – Une flopée de contre-exemples. Dire si les assertions suivantes sont vraies ou fausses. Lorsqu'elles sont fausses, donner un contre-exemple et corriger l'assertion (lorsque c'est possible).

- a) Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, alors AB = BA.
- b) Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, alors $(AB)^2 = A^2B^2$.
- c) Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $AB = 0_2$ alors A = 0 ou B = 0.

- d) Si A, B et C sont trois matrices de $\mathcal{M}_n(\mathbb{R})$ telles que AB = AC alors B = C.
- e) Si A et B sont deux matrices de $\mathscr{M}_n(\mathbb{R})$, alors $(AB)^{\top} = A^{\top}B^{\top}$.
- f) Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, alors $(A+B)^2 = A^2 + 2AB + B^2$.
- g) Si A et B sont deux matrices inversibles de $\mathcal{M}_n(\mathbb{R})$, alors $(AB)^{-1} = A^{-1}B^{-1}$.

Exercice 19 - Oral TSI CCINP 2023. On considère la matrice

$$A = \begin{pmatrix} -5 & 9 \\ -1 & 1 \end{pmatrix}$$

Déterminer, pour tout $n \in \mathbb{N}$, A^n . On pourra montrer qu'il existe deux suites (à déterminer) $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ telle que, pour tout $n \in \mathbb{N}$, $A^n = u_n A + v_n I_2$.

Exercice 20 – Oral MP CCINP 2018. Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que AB - BA = B. Montrer que

$$\forall n \in \mathbb{N}, AB^n - B^n A = nB^n$$

Exercice 21 – Lien avec les suites récurrentes d'ordre 2, Problème Classique. On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$u_0 = 0, \quad v_0 = 1, \quad \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = -2u_n + v_n \\ v_{n+1} = 3u_n \end{cases}$$

1. (a) Déterminer une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que,

$$\forall n \in \mathbb{N}, \quad \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = A \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

(b) En déduire que,

$$\forall n \in \mathbb{N}, \quad \begin{pmatrix} u_n \\ v_n \end{pmatrix} = A^n \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

2. On note

$$P = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$$

- (a) Montrer que *P* est inversible et calculer son inverse.
- (b) Montrer que la matrice $D = P^{-1}AP$ est diagonale.
- (c) En déduire, pour tout $n \in \mathbb{N}$, l'expression de D^n .
- (d) Montrer que $D = P^{-1}AP$.
- (e) Montrer par récurrence, pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
- (f) En déduire,

$$\forall n \in \mathbb{N}, \quad A^n = -\frac{1}{4} \begin{pmatrix} -1 + (-3)^{n+1} & -1 + (-3)^n \\ -3 - (-3)^{n+1} & -3 - (-3)^n \end{pmatrix}$$

(g) En déduire les valeurs de u_n et v_n en fonction de n.