
14. Étude d’une suite numérique
Dans ce chapitre, l’ensemble K désigne R ou C.

1 Notion de suite
Définition 1.1 Une suite de réels (ou de complexes) est une application de N dans R (ou dans C)

u ∶ N → R (ou C)
n ↦ u(n)

• Pour tout n ∈ N, u(n) est noté un, et est appelé terme général de la suite.
• La suite est notée (un)n∈N.
• L’ensemble des suites réelles est noté RN et l’ensemble des suites complexes est noté CN.

! Certaines suites ne sont pas définies sur tout N. De manière générale, si une suite n’est définie qu’à
partir du rang n0, on note (un)n⩾n0 .

Terme général Premier terme licite Notation de la suite

1
n

√
n−2

ln(n)

1
n2+1

1.1 Modes de définition d’une suite
On peut définir une suite de plusieurs façons.
• De manière explicite : pour tout n ∈ N, un est directement exprimé en fonction de n. Ainsi, tous les

termes de la suite se calculent de manière directe.
• Par récurrence : pour tout n ∈ N, un est exprimé en fonction d’un ou plusieurs termes précédents

u0,u1, . . . ,un−1.
• De manière implicite : pour tout n ∈ N, un vérifie une certaine propriété donnée dépendant de n. Par

exemple, pour tout n ∈N, un est l’unique solution dans R de l’équation x3+x−1 = n. Dans ce cas, on
a rarement accès aux valeurs de la suite. Ce type de suites sera étudié dans un autre chapitre.

Exemple 1.2

Définition Explicite/Réc. ? Calcul des premiers termes

∀n ∈ N∗, un =
1
n

∀n ∈ N, un = n2−1

∀n ∈ N, vn = (−1)n+2

u1 = 1 et ∀n ∈ N∗, un+1 = 3un+2

w0 = 0, w1 = 1, et ∀n ∈ N, wn+2 = wn+1+wn
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1.2 Représentation graphique
Pour étudier une suite, et en particulier étudier son comportement “à l’infini”, on peut la représenter

graphiquement pour essayer de “voir” ce qu’il se passe.

Pour les suites définies de manière explicite.
On peut représenter graphiquement une suite (un)n∈N définie de manière explicite de deux manières

différentes.
• On peut placer dans le plan les points de coordonnées (n,un) pour n ∈ N.
• On peut aussi représenter la suite comme un ensemble de valeurs le long d’un axe.

Exemple 1.3 Représentons graphiquement, des deux manières différentes, la suite (un)n∈N définie par

pour tout n ∈ N, un = n2
−5.

Pour s’aider, on peut calculer les premiers termes de la suite

u0 = u1 = u2 = u3 = . . .

• Dans un premier temps, on peut placer dans le plan les points (n,un).

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
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• Dans un second temps, on peut placer les valeurs de la suite le long d’un axe.

∣ ∣ ∣ ∣ ∣∣∣∣∣∣

Pour les suites définies de manière implicite.
Pour représenter graphiquement, dans le plan, une suite définie définie par récurrence, on peut
• calculer les premiers termes de la suite à la main et les placer sur le graphique,
• soit construire directement sa représentation graphique à l’aide de la droite y = x.
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Exemple 1.4 Représentons graphiquement, sans calculer les premiers termes, la suite (un)n∈N définie par

u0 = 1 et pour tout n ∈ N, un+1 =
1
2un+

5
2 .

∣ ∣ ∣ ∣ ∣ ∣
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−

−

−

y = x

y = 1
2 x+ 5

2

On peut vérifier à la main les premières valeurs

u0 = u1 = u2 = u3 = . . .

2 Étude qualitative d’une suite
2.1 Variation d’une suite

Définition 2.1 — Suite constante & Suite stationnaire. Soit (un)n∈N une suite réelle ou complexe.
• On dit que la suite (un)n∈N est constante si :

pour tout n ∈ N, un+1 = un.

Dans ce cas, il existe une constante C ∈ R telle que, pour tout n ∈ N, on a un =C.

• On dit que la suite (un)n∈N est stationnaire si elle est constante à partir d’un certain rang :

il existe n0 ∈ N tel que pour tout n ⩾ n0, un+1 = un.
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Exemple 2.2 Étudions la suite définie par

{ u0 = 2
pour tout n ∈ N, un+1 = ∣u2

n−2∣
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Définition 2.3 — Monotonie d’une suite. Soit (un)n∈N une suite réelle.
• On dit que la suite (un)n∈N est croissante si

pour tout n ∈ N, un ⩽ un+1.

• On dit que la suite (un)n∈N est décroissante si

pour tout n ∈ N, un ⩾ un+1.

• On dit que la suite (un)n∈N est monotone si elle est croissante ou décroissante.

• Lorsque les inégalités sont strictes, on dit que la suite est strictement croissante ou strictement
décroissante.

Comment étudier les variations d’une suite?
Pour étudier la monotonie, on dispose de plusieurs méthodes.
▶ Méthode 1 - Étudier le signe de un+1−un pour tout n ∈ N :

Pour tout n ∈ N, un+1−un ⩾ 0 ⇔ Pour tout n ∈ N, un ⩽ un+1 ⇔ (un)n∈N est croissante

▶ Méthode 2 - Si on sait que pour tout n ∈ N, un > 0, on peut comparer un+1
un

et 1 :

Pour tout n ∈ N,
un+1
un

⩾ 1 ⇔ Pour tout n ∈ N, un ⩽ un+1 ⇔ (un)n∈N est croissante

▶ Méthode 3 - Passer par l’étude d’une fonction. Si pour tout n ∈ N, un = f (n), on peut étudier les
variations de f pour en déduire celle de la suite (un)n∈N.

▶ Méthode 4 - On peut montrer par récurrence que pour tout n ∈ N, un ⩽ un+1.

Exemple 2.4 Étudier la monotonie des suites (un)n∈N, (vn)n∈N et (wn)n∈N définies par,

a) ∀n ∈ N, un =
n

n+1
b) v0 = 2 et ∀n ∈ N, vn+1 = v2

n+ vn+2

c) ∀n ∈ N, un =
1
5n
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Exemple 2.5 Étudier la monotonie de la suite (un)n∈N définie par, pour tout n ∈ N, un = exp(n).
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2.2 Suites majorées/minorées/bornées
Définition 2.6 Soit (un)n∈N une suite réelle.

• On dit que la suite (un)n∈N est majorée s’il existe un réel M tel que

pour tout n ∈ N, un ⩽M.

• On dit que la suite (un)n∈N est minorée s’il existe un réel m tel que

pour tout n ∈ N, un ⩾ m.

• On dit que la suite (un)n∈N est bornée si elle est majorée et minorée.

Exemple 2.7 Déterminer si la suite (un)n∈N∗ définie par, pour tout n ∈N∗, un =
1
n est majorée/minorée/bor-

née.
k Gestes Invisibles/Automatismes. Pour conjectu-
rer la bornitude d’une suite (ou non), on peut la re-
présenter graphiquement pour avoir une idée de son
comportement.

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
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Exemple 2.8 Déterminer si la suite (un)n∈N définie par, pour tout n ∈N, un = n est majorée/minorée/bornée.
k Gestes Invisibles/Automatismes. Pour
conjecturer la bornitude d’une suite (ou non), on
peut la représenter graphiquement pour avoir
une idée de son comportement.
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Proposition 2.9 Soient (un)n∈N une suite réelle et M ∈ R. La suite (un)n∈N est bornée par M si et
seulement si la suite (∣un∣)n∈N est majorée par M.

Démonstration. Cette proposition provient de l’équivalence suivante,

pour tout n ∈ N, ∣un∣ ⩽M ⇔ pour tout n ∈ N, −M ⩽ un ⩽M.

�

Exemple 2.10 Montrons que la suite (un)n∈N∗ est bornée où,

pour tout n ∈ N∗, un =
(−1)n

n .

k Gestes Invisibles/Automatismes. Pour conjectu-
rer la bornitude d’une suite (ou non), on peut la re-
présenter graphiquement pour avoir une idée de son
comportement.
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Exemple 2.11 Montrons que la suite (un)n∈N∗ est bornée où,

pour tout n ∈ N∗, un = (−1)n
−

1
2n .

k Gestes Invisibles/Automatismes. Comme on ne connaît pas le signe de la suite que l’on
étudie, pour montrer le caractère borné d’une suite, on majore la valeur absolue de la suite.
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Exemple 2.12 Montrer que la suite (un)n∈N est bornée où

∀n ∈ N, un =
sin(πn+1)

n2+1

k Gestes Invisibles/Automatismes. Comme on ne connaît pas le signe de la suite que l’on
étudie, pour montrer le caractère borné d’une suite, on majore la valeur absolue de la suite.

Définition 2.13 Soit (zn)n∈N une suite complexe. On dit que la suite (zn)n∈N est bornée si la suite réelle
(∣zn∣)n∈N est majorée.

Exemple 2.14 Montrer que la suite (zn)n∈N est bornée où

∀n ∈ N, zn = ein

3 Suites remarquables
3.1 Suites arithmétiques

Définition 3.1 Une suite (un)n∈N est dite arithmétique si l’écart entre deux termes consécutifs est
constant.

Paramètres Relation de récurrence Expression explicite

Premier terme : u0 – Raison : r Pour tout n ∈ N, un+1 = un+ r Pour tout n ∈ N, un = u0+nr

Premier terme : up – Raison : r Pour tout n ⩾ p, un+1 = un+ r Pour tout n ⩾ p, un = up+ (n− p)r

∣ ∣ ∣ ∣ ∣∣∣∣∣∣• • • • •u0 u1 u2 u3 u4

+r +r +r +r
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Exemple 3.2

Suite Arithm.? Raison 1er terme Terme général

u0 = 11 et pour tout n ∈ N, un+1 = un+3

Pour tout n ∈ N, un = n2

Pour tout n ∈ N, un = 4n+5

u0 = 1 et pour tout n ∈ N, un+1 = un−1

Pour tout n ∈ N, un = n

u2 = 1 et pour tout n ⩾ 2, un+1 = un+1

Ú Vérification. On n’oublie pas de vérifier que les formules explicites sont bien valables au moins pour le
premier terme de la suite.

Exemple 3.3 Proposer une expression explicite de la suite représentée graphiquement ci-dessous.

n

un

1

1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
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•u3
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3.2 Suites géométriques
Définition 3.4 Une suite (un)n∈N est dite géométrique si le rapport entre deux termes consécutifs est
constant.

Paramètres Relation de récurrence Expression explicite

Premier terme : u0 – Raison : q Pour tout n ∈ N, un+1 = q×un Pour tout n ∈ N, un = u0×qn

Premier terme : up – Raison : q Pour tout n ⩾ p, un+1 = q×un Pour tout n ⩾ p, un = up×qn−p

∣ ∣ ∣ ∣ ∣∣ ∣∣∣∣∣• • • •u0 u1 u2 u3

×q

×q

×q

Preuve de l’expression explicite à partir de la relation de récurrence. Soit (un)n∈ N une suite définie par son premier
terme u0 et par la relation de récurrence suivante,

pour tout n ∈ N, un+1 = q×un.

Montrons que, pour tout n∈N, un = u0×qn. k Gestes Invisibles/Automatismes. On souhaite montrer qu’une propriété
est vraie pour tout entier naturel. On pense au raisonnement par récurrence.

Montrons par récurrence, que pour tout n ∈ N, la propriété P(n) suivante est vraie,

P(n) ∶ « un = u0×qn »

• Initialisation. Montrons que la propriété P(0) est vraie, c’est-à-dire montrons que u0 = u0×q0.

Par convention, q0
= 1. Donc u0×q0

= u0×1 = u0.
Donc, la propriété P(0) est vraie.

• Hérédité. On suppose que la propriété P(n) est vraie pour un certain n ∈ N, c’est-à-dire, on suppose que

un = u0×qn
.

Montrons que la propriété P(n+1) est vraie, c’est-à-dire, montrons que

un+1 = u0×qn+1
.

k Gestes Invisibles/Automatismes. Pour faire marcher l’hérédité, il faut comprendre le lien entre P(n) et
P(n+1), c’est-à-dire ici le lien entre un et un+1. On remarque alors que l’énoncé nous indique que un+1 = q×un.

Par hypothèse de récurrence, on sait que un = u0×qn.
Or, d’après l’énoncé, un+1 = q×un.

En combinant ces deux informations, on obtient que un+1 = q×u0×qn
= u0×qn+1.

Donc, la propriété P(n+1) est vraie.

• Conclusion. Par principe de récurrence, on obtient que pour tout n ∈ N, un+1 = q×un.
�
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Exemple 3.5

Suite Géo. ? Raison 1er terme Terme général

u0 = 7 et pour tout n ∈ N, un+1 = 5un

Pour tout n ∈ N, un = n2

Pour tout n ∈ N, un = 3×7n

u0 = 1 et pour tout n ∈ N, un+1 = −un

u1 = 2 et pour tout n ∈ N∗, un+1 = 3un

Ú Vérification. On n’oublie pas de vérifier que les formules explicites sont bien valables au moins pour le
premier terme de la suite.

3.3 Suites arithmético-géométrique

Définition 3.6 Une suite (un)n∈N est dite arithmético-géométrique s’il existe a,b ∈K2 tel que

pour tout n ∈ N, un+1 = aun+b.

! • Si a = 1, la suite est arithmétique de raison b
• Si b = 0, la suite est géométrique de raison a

Comment déterminer l’expression d’une suite arithmético-géométrique?
Pour déterminer l’expression explicite de la suite (un)n∈N définie par,

pour tout n ∈ N, un+1 = aun+b

1. On commence par résoudre dans R l’équation ` = a`+b.
2. On pose, pour tout n ∈ N, vn = un− `.
3. On montre que (vn)n∈N est une suite géométrique de raison q à déterminer.
4. On en déduit que, pour tout n ∈ N, vn = v0×qn.
5. On en déduit que, pour tout n ∈ N, un = `+ vn = `+ v0×qn.

Exemple 3.7 Déterminons l’expression explicite de la suite (un)n∈N définie par son premier terme u0 = 5 et
par la relation de récurrence, donnée par, pour tout n ∈ N, un+1 = 3un−4.
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3.4 Suites récurrentes linéaire d’ordre 2
Définition 3.8 Une suite (un)n∈N est dite récurrente linéaire d’ordre 2 s’il existe (a,b) ∈K×K∗ tels
que

pour tout n ∈ N, un+2 = aun+1+bun.

Proposition 3.9 — Cas coefficients complexes. Soit (un)n∈N une suite récurrente linéaire d’ordre
2 telle que

pour tout n ∈ N, un+2 = aun+1+bun.

avec a et b deux nombres complexes. L’équation r2
= ar+b est appelée équation caractéristique de la

suite (un)n∈N. Notons ∆ le discriminant de cette équation. Trois cas sont alors possibles.

Racines de l’éq. carac. Terme général de la suite

∆ ≠ 0 Deux racines distinctes : r1,r2 Pour tout n ∈ N, un = Arn
1+Brn

2

∆ = 0 Une racine : r0 Pour tout n ∈ N, un = (A+Bn)rn
0

avec A et B deux constantes complexes (à déterminer éventuellement à partir des deux premiers termes de
la suite).

Exemple 3.10 Déterminer le terme général des suites récurrente linéaire d’ordre 2 suivante.

Relation Éq. carac. Racines Terme général

∀n, zn+2 = (2+2i)zn+1−2izn

∀n, zn+2 = 2zn+1−2zn
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Proposition 3.11 — Cas coefficients réels. Soit (un)n∈N une suite récurrente linéaire d’ordre 2 telle
que

pour tout n ∈ N, un+2 = aun+1+bun.

avec a et b deux nombres réels. L’équation r2
= ar+b est appelée équation caractéristique de la suite

(un)n∈N. Notons ∆ le discriminant de cette équation. Trois cas sont alors possibles.

Racines de l’éq. carac. Terme général de la suite

∆ > 0 Deux racines réelles distinctes : r1,r2 Pour tout n ∈ N, un = Arn
1+Brn

2

∆ = 0 Une racine réelle : r0 Pour tout n ∈ N, un = (A+Bn)rn
0

∆ < 0 Deux racines complexes ρe±iθ Pour tout n ∈ N, un = ρ
n(Acos(nθ)+Bsin(nθ))

avec A et B deux constantes réelles (à déterminer éventuellement à partir des deux premiers termes de la
suite).

Exemple 3.12 Déterminer le terme général des suites récurrente linéaire d’ordre 2 suivante.

Relation Éq. carac. Racines Terme général

∀n, un+2 = 5un+1−6un

∀n, un+2 = 2un+1−un

∀n, un+2 = un+1−un

Exemple 3.13 Soit (vn)n∈N définie par, v0 = 0, v1 = −1 et pour tout n ∈ N, vn+2 = 6vn+1−9vn.
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