(14. Etude d’une suite numérique

Dans ce chapitre, I’ensemble K

1 Notion de suite

* La suite est notée (u,),eN.

Certaines suites ne sont pas définies sur tout N. De mani¢re générale, si une suite n’est définie qu’a

partir du rang ng, on note (u,,)

désigne R ou C.

u : N - R (ouC

n u(n)

nzng*

Définition 1.1 Une suite de réels (ou de complexes) est une application de N dans R (ou dans C)

* Pour tout n € N, u(n) est noté u,, et est appelé terme général de la suite.

« L'ensemble des suites réelles est noté R"' et I’ensemble des suites complexes est noté cM.

Terme général

Premier terme licite

Notation de la suite

S =

n—2

1.1 Modes de définition d’une suite
On peut définir une suite de plusieurs fagons.
* De maniere explicite : pour tout n € N, u,, est directement exprimé en fonction de 7. Ainsi, tous les

termes de la suite se calculent

de maniere directe.

* Par récurrence : pour tout n € N, u, est exprimé en fonction d’un ou plusieurs termes précédents

Up, ULy Up—1-

¢ De maniere implicite : pour tout n € N, u,, vérifie une certaine propriété donnée dépendant de n. Par
exemple, pour tout n € N, u, est I'unique solution dans R de 1’équation x> +x—1=n. Dans ce cas, on

a rarement acces aux valeurs de la suite. Ce type de suites sera étudié dans un autre chapitre.

Exemple 1.2

Définition

Explicite/Réc. ?

Calcul des premiers termes

Vn e N*, un=%

VneN, un=n2—1

VneN, v,=(-1)"+2

uy=letVneN* u, =3u,+2

WOZO, wi = lvet vnEvan-f-Z :W}’l+1+wl’l
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1.2 Représentation graphique

Pour étudier une suite, et en particulier étudier son comportement “a I’infini”, on peut la représenter
graphiquement pour essayer de “voir” ce qu’il se passe.

Pour les suites définies de maniére explicite.

On peut représenter graphiquement une suite (u,),en définie de maniére explicite de deux maniéres
différentes.

¢ On peut placer dans le plan les points de coordonnées (n,u, ) pour n € N.

* On peut aussi représenter la suite comme un ensemble de valeurs le long d’un axe.

Exemple 1.3 Représentons graphiquement, des deux maniéres différentes, la suite (i, ),ey définie par

2
pourtoutn €N, u,=n"—5.
Pour s’aider, on peut calculer les premiers termes de la suite
uy = u = uy = usz =

* Dans un premier temps, on peut placer dans le plan les points (n,u,).

* Dans un second temps, on peut placer les valeurs de la suite le long d’un axe.

Pour les suites définies de maniére implicite.
Pour représenter graphiquement, dans le plan, une suite définie définie par récurrence, on peut
e calculer les premiers termes de la suite a la main et les placer sur le graphique,
* soit construire directement sa représentation graphique a 1’aide de la droite y = x.
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2.1

Exemple 1.4 Représentons graphiquement, sans calculer les premiers termes, la suite (u,,),en définie par

1 5
uy =1 et pourtoutn €N, u, | = zun+ 5

On peut vérifier a la main les premieres valeurs

uy = u = uy = usz =

Etude qualitative d’une suite

Variation d’une suite
Définition 2.1 — Suite constante & Suite stationnaire. Soit (u,,),cn une suite réelle ou complexe.
¢ On dit que la suite (i, ),en est constante si :

pour toutn € N, w41 = u,.

Dans ce cas, il existe une constante C € R telle que, pour toutn € N,onau, =C.

* On dit que la suite (i, ),en €st stationnaire si elle est constante a partir d’un certain rang :

il existe ng € N tel que pour tout n = ng, Uyt = Uy,.
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Exemple 2.2 Etudions la suite définie par

u0=2
pourtoutn € N, u, | = |uﬁ—2|
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Définition 2.3 — Monotonie d’une suite. Soit (u,),en une suite réelle.
* On dit que la suite (u,),cy €st croissante si

pourtoutn € N, u, < upyy.
* On dit que la suite (u,),en est décroissante si
pourtoutn € N, u, = u,4.
* On dit que la suite (u,),en €st monotone si elle est croissante ou décroissante.

* Lorsque les inégalités sont strictes, on dit que la suite est strictement croissante ou strictement
décroissante.

Comment étudier les variations d’une suite ?
Pour étudier la monotonie, on dispose de plusieurs méthodes.
» Méthode 1 - Etudier le signe de u,,.; —u,, pour tout n € N :

Pourtoutn €N, u,. 1 —u, 20 < Pourtoutn€N, u, Su,y; < (u,)nen €St croissante

» Méthode 2 - Si on sait que pour tout n € N, &, > 0, on peut comparer 2*L et 1 :
que p n p p

Uy,

Up+1
Up

Pour tout n € N, 21 < Pourtoutn€N, u, Su,y; < (u,)nen €st croissante

P Meéthode 3 - Passer par 1’étude d’une fonction. Si pour tout n € N, u,, = f(n), on peut étudier les
variations de f pour en déduire celle de la suite (u,,),eN.
» Meéthode 4 - On peut montrer par récurrence que pour tout 7 € N, u,, < u,,4.

Exemple 2.4 Etudier la monotonie des suites (i, )nen, (Vi )nen €t (W, )nen définies par,

n

a) VneN, U, = PEE]

b)vg=2etVneN, vn+1=vﬁ+vn+2
1

c)VneN, Un = 55
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Exemple 2.5 Etudier la monotonie de la suite (1, ),en définie par, pour tout n € N, u, = exp(n).
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2.2 Suites majorées/minorées/bornées

Définition 2.6 Soit (u,),en une suite réelle.
* On dit que la suite (i, ),en €st majorée s’il existe un réel M tel que

pourtoutn € N, u, <M.
* On dit que la suite (u,),en est minorée s’il existe un réel m tel que

pourtoutn € N, u, =m.

* On dit que la suite (u,),cn est bornée si elle est majorée et minorée.

Exemple 2.7 Déterminer si la suite (u,),en* définie par, pour tout n € N* u, = i est majorée/minorée/bor-
née.

P Gestes Invisibles/Automatismes. Pour conjectu-

rer la bornitude d’une suite (ou non), on peut la re-

présenter graphiquement pour avoir une idée de son

comportement.

Exemple 2.8 Déterminer si la suite (i, ),en définie par, pour tout n € N, u,, = n est majorée/minorée/bornée.

& Gestes Invisibles/Automatismes. Pour
conjecturer la bornitude d’une suite (ou non), on
peut la représenter graphiquement pour avoir
une idée de son comportement.
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seulement si la suite (|uy,|),en est majorée par M.

Proposition 2.9 Soient (u,),en une suite réelle et M € R. La suite (u,),ey €st bornée par M si et

Démonstration. Cette proposition provient de 1I’équivalence suivante,

pour tout n € N, |u,| < M = pour toutn € N, —M < u, < M.

Exemple 2.10 Montrons que la suite (u,),en* est bornée ou,

(-1

n

pour tout n € N*, U, =

& Gestes Invisibles/Automatismes. Pour conjectu-
rer la bornitude d’une suite (ou non), on peut la re-
présenter graphiquement pour avoir une idée de son
comportement.

Exemple 2.11 Montrons que la suite (u,),en* est bornée ou,

1
pourtoutnEN*, u, = (_1)”_%_

& Gestes Invisibles/Automatismes. Comme on ne connait pas le signe de la suite que I’on
étudie, pour montrer le caractere borné d’une suite, on majore la valeur absolue de la suite.
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3.1

Exemple 2.12 Montrer que la suite (u,),en est bornée ol

VneN, U, =
" n?+1

sin(mn+1)

& Gestes Invisibles/Automatismes. Comme on ne connait pas le signe de la suite que ’on
étudie, pour montrer le caractere borné d’une suite, on majore la valeur absolue de la suite.

Définition 2.13 Soit (z,,),en une suite complexe. On dit que la suite (z,,),en est bornée si la suite réelle

(|zn] ) nen est majorée.

Exemple 2.14 Montrer que la suite (z,),en est bornée olt

Suites remarquables

Suites arithmétiques

constant.

VneN, =

Définition 3.1 Une suite (u,),en est dite arithmétique si 1’écart entre deux termes consécutifs est

Parametres

Relation de récurrence

Expression explicite

Premier terme : uy — Raison : r

Pourtoutn € N, u, 1 =u,+r

Pour tout n € N, u,, = uy + nr

Premier terme : u, — Raison : r

Pour toutn = p, u,y1 =u, +r

Pour tout n = p, u, = u, +(n—p)r
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Exemple 3.2

Suite

Arithm. ?

Raison

1% terme

Terme général

uy=1letpourtoutn €N, u, 1 =u,+3

Pourtoutn € N, u, = n2

Pourtoutn € N, u, =4n+5

uy=letpourtoutn €N, u,y =u,—1

Pourtoutn € N, u, =n

up = letpourtoutn =2, u,.q =u,+1

P Vérification. On n’oublie pas de vérifier que les formules explicites sont bien valables au moins pour le

premier terme de la suite.

Exemple 3.3 Proposer une expression explicite de la suite représentée graphiquement ci-dessous.

~ ity

1- el

1 oll]

ol
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3.2 Suites géométriques
Définition 3.4 Une suite (u,),en est dite géométrique si le rapport entre deux termes consécutifs est
constant.

Parametres Relation de récurrence Expression explicite

Premier terme : uo — Raison : ¢ | Pour tout n € N, u,,.; = gXu, | Pourtoutn €N, u, = ugxq"

P

. . n—
Premier terme : u,, — Raison : g | Pour toutn = p, u,.1 = g Xu, | Pourtoutn = p, u, = u, Xq

xg

Xq.

E xq

uoy uy up us

Preuve de I’expression explicite & partir de la relation de récurrence. Soit (uy),e N une suite définie par son premier
terme ug et par la relation de récurrence suivante,

pour tout n € N, Ups] =g X Uy.

Montrons que, pour tout n € N, u,, = uy X ¢". # Gestes Invisibles/Automatismes. On souhaite montrer qu’une propriété
est vraie pour tout entier naturel. On pense au raisonnement par récurrence.

Montrons par récurrence, que pour tout n € N, la propriété P(n) suivante est vraie,
P(n): «u,=ugXq" »

* Initialisation. Montrons que la propriété P (0) est vraie, ¢’est-a-dire montrons que ug = ug X qo.
Par convention, qo = 1. Donc ug X qo =ug X 1 =u.
Donc, la propriété P(0) est vraie.

 Hérédité. On suppose que la propriété P (n) est vraie pour un certain n € N, ¢’est-a-dire, on suppose que
U, =g Xq'".

Montrons que la propriété P(n + 1) est vraie, ¢’est-a-dire, montrons que

n+1
Upt1 = U Xq .

& Gestes Invisibles/Automatismes. Pour faire marcher 1’hérédité, il faut comprendre le lien entre P(n) et
P(n+1), c’est-a-dire ici le lien entre u,, et u,+. On remarque alors que I’énoncé nous indique que u,+1 = g X u,.

Par hypothese de récurrence, on sait que u, = uy X ¢".

Or, d’apres I’énoncé, u,,+1 = g X u,.

En combinant ces deux informations, on obtient que i,y = ¢ X g X ¢ = ug X q"+1.
Donc, la propriété P(n+ 1) est vraie.

» Conclusion. Par principe de récurrence, on obtient que pour tout n € N, u,41 = g X u,,.
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Exemple 3.5

Suite Géo.? | Raison | 1% terme

Terme général

uy =7 et pour toutn €N, u,1 = Su,

Pour toutn € N, u, = n’

Pour toutn € N, u, =3x7"

uy = letpourtoutn € N, u,+1 = —u,

u; =2 et pour tout n € N*, u,, | = 3u,

P Vérification. On n’oublie pas de vérifier que les formules explicites sont bien valables au moins pour le
premier terme de la suite.

3.3 Suites arithmético-géomeétrique

Définition 3.6 Une suite (u,),en est dite arithmético-géométrique s’il existe a,b € K> tel que

pourtoutn € N, u,. =au, +b.

¢ Sia =1, la suite est arithmétique de raison b
* Sib =0, la suite est géométrique de raison a

Comment déterminer I'expression d’une suite arithmético-géométrique ?
Pour déterminer 1’expression explicite de la suite (u,),en définie par,

pourtoutn € N, wu, . =au,+b

1. On commence par résoudre dans R I’équation ¢ = af + b.
2. On pose, pour toutn € N, v,, = u,, — £.

3.

4. On en déduit que, pour tout n € N, v, = vy X q".

5.

On montre que (v, ),y €st une suite géométrique de raison ¢ a déterminer.

On en déduit que, pour toutn € N, u,, = £ +v, =L +vy X q".

Exemple 3.7 Déterminons I’expression explicite de la suite (u,),en définie par son premier terme uy = 5 et
par la relation de récurrence, donnée par, pour tout n € N, u,,.1 = 3u, — 4.
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3.4 Suites récurrentes linéaire d’ordre 2
Définition 3.8 Une suite (,,) ey est dite récurrente linéaire d’ordre 2 s’il existe (a,b) € K x K™ tels

que
pourtoutn €N, u,.» = au,| + bu,.

Proposition 3.9 — Cas coefficients complexes. Soit (u,),cy une suite récurrente linéaire d’ordre

2 telle que
pour toutn €N, wu,.» = au,| + bu,.

avec a et b deux nombres complexes. L équation P’ =ar+best appelée équation caractéristique de la
suite (u, ) en. Notons A le discriminant de cette équation. Trois cas sont alors possibles.

Racines de I’éq. carac. Terme général de la suite

A # 0 | Deux racines distinctes : 7,7, | Pour tout n € N, u,, = Ar| + Brj

A=0 Une racine : ry Pour tout n € N, u,, = (A + Bn)r;

avec A et B deux constantes complexes (a déterminer éventuellement a partir des deux premiers termes de

la suite).

Exemple 3.10 Déterminer le terme général des suites récurrente linéaire d’ordre 2 suivante.

Relation Eq. carac. Racines Terme général

Y1, Zarr = (2+2i) 2,41 = 2iz,

Vn, zu42 = 22041 — 224
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Proposition 3.11 — Cas coefficients réels. Soit (u,),cn une suite récurrente linéaire d’ordre 2 telle

que

avec a et b deux nombres réels. L’ équation r~ = ar + b est appelée équation caractéristique de la suite

pour tout n € N,

Upyo = Alpy) T bun

(1, )nen- Notons A le discriminant de cette équation. Trois cas sont alors possibles.

Racines de I’éq. carac.

Terme général de la suite

A > 0 | Deux racines réelles distinctes : rq, 7,

Pour tout n € N, u,, = Ar| + Brs

A=0 Une racine réelle : ry

Pour tout n € N, u,, = (A + Bn)r,

o +
A<O Deux racines complexes pe~

i0

Pour tout n € N, u,, = p"(Acos(n8) + Bsin(n0))

avec A et B deux constantes réelles (a déterminer éventuellement a partir des deux premiers termes de la

suite).

Exemple 3.12 Déterminer le terme général des suites récurrente linéaire d’ordre 2 suivante.

Relation

Eq. carac.

Racines

Terme général

Vn, upio = Suyq1 — 61,

Vn, upio = 2upp1 — Uy

Vna Upt2 = Up+] — Uy

Exemple 3.13 Soit (v, ),en définie par, vg = 0, v; = —1 et pour tout n € N, v, o = 6v,4.1 —9v,,.
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