
15. Lien Systèmes Linéaires/Calcul Matriciel

1 Systèmes Linéaires
1.1 Systèmes Linéaires Compatibles

Dans un chapitre précédent, nous avons appris à résoudre des systèmes linéaires de petite taille (2 ou 3
inconnues à 2 ou 3 équations) à l’aide de la méthode du pivot. Nous étudions ici des systèmes avec davantage
d’inconnues ou d’équations

Définition 1.1 — Système Linéaire. On appelle système linéaire de n équations à p inconnues un système
(S) de la forme

(S)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1,1x1 + . . . +a1,pxp = b1
⋮ ⋮ ⋮

an,1x1 + . . . +an,pxp = bn

où
• et les réels x1, . . . ,xp sont les p inconnues du système,
• les réels a1,1,a1,2, . . . ,an,n sont les coefficients du système,
• et le vecteur de réels (b1, . . . ,bn) forme le second membre du système.

Une solution du système est un p-uplet (x1, . . . ,xp) ∈ Rp qui vérifie le système (S) ci-dessus.

Définition 1.2 Un système linéaire est dit compatible s’il admet au moins une solution.

Exemple 1.3 Déterminer si le système suivant est compatible ou non.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x+2y−3z = 7
2x−5y+ z = −4
3x−3y−2z = 1
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Exemple 1.4 Déterminer si le système suivant est compatible ou non.

{x1+ x2+3x3 = 0
2x1+2x2− x3 = 0

L’Exemple 1.4 est représentatif d’un phénomène plus général.

Définition 1.5 Soit (S) le système linéaire de n équations à p inconnues de la forme

(S)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1,1x1 + . . . +a1,pxp = b1
⋮ ⋮ ⋮

an,1x1 + . . . +an,pxp = bn

On appelle système homogène associé le système linéaire suivant

(S)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1,1x1 + . . . +a1,pxp = 0
⋮ ⋮ ⋮

an,1x1 + . . . +an,pxp = 0

Tout système homogène est compatible : le p-uplet (0, . . . ,0) en est une solution.
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Attention, un sytème linéaire et son système homogène associé peuvent avoir des comportements très
différents.

Exemple 1.6 Dire si le système suivant est compatible. Faire de même avec le système homogène associé.

(S) { x + y = 1
−x − y = −1

1.2 Interprétation matricielle d’une système linéaire
On a

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1,1x1 + . . . a1,pxp = b1
⋮ ⋮ ⋮

an,1x1 + . . . an,pxp = bn

⟺

⎛
⎜⎜⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,p
a2,1 a2,2 . . . a2,p
⋮ ⋮ ⋮ ⋮

an,1 an,2 . . . an,p

⎞
⎟⎟⎟⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=A

×

⎛
⎜⎜⎜⎜⎜
⎝

x1
x2
⋮

xp

⎞
⎟⎟⎟⎟⎟
⎠

ÍÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒ Ï
=X

=

⎛
⎜⎜⎜⎜⎜
⎝

b1
b2
⋮

bn

⎞
⎟⎟⎟⎟⎟
⎠

ÍÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒ Ï
=B

où
• A ∈Mn,p(K) est la matrice des coefficients du système
• B ∈Mn,1(K) est la matrice colonne du second membre
• et X ∈Mn,1(K) est la matrice colonne est inconnues du système.

Exemple 1.7 Donner l’interprétation matricielle des systèmes linéaires suivants.

• {3x+7y+ z = 2
2x+ y = 8

⟺

•

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x+ y+ z = 1
x−2z = 3
2x+3y+4z = 6
x−3y = 15

⟺

•

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1+2x2+2x4 = 1
x2−2x3+ x4 = 3
4x3− x4 = −1
3x4 = 15

⟺
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On peut alors traduire la notion de compatibilité définie précédemment au niveau matriciel.

Proposition 1.8 Soit A ∈Mn,p(K) et B ∈Mn,1(K). Le système linéaire AX = B est compatible si et
seulement si B est combinaison linéaire des colonnes de A.

Démonstration. Soit X ∈Mn,1(K). On peut écrire le vecteur inconnu sous la forme :

X =

⎛
⎜⎜⎜⎜⎜
⎝

x1
x2
⋮

xn

⎞
⎟⎟⎟⎟⎟
⎠
= x1

⎛
⎜⎜⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟⎟⎟
⎠
+ x2

⎛
⎜⎜⎜⎜⎜
⎝

0
1
⋮
0

⎞
⎟⎟⎟⎟⎟
⎠
+⋯+ xn

⎛
⎜⎜⎜⎜⎜
⎝

0
0
⋮
1

⎞
⎟⎟⎟⎟⎟
⎠
= x1E1+ x2E2+⋯xnEn

Dans ce cas, le produit matriciel AX peut être ré-écrit sous la forme,

AX = A(x1E1+⋯+ xpEp)
= x1AE1+⋯+ xpAEp

= x1C1+ . . .+ xpCp

Ainsi, on obtient la caractérisation suivante.

Le système AX = B est compatible ⟺ ∃X ∈Mn,1(K), AX = B

⟺ ∃x1, . . . ,xn ∈K, x1C1+ . . .+ xpCp = B

⟺ B est combinaison linéaire des colonnes de A

�

Exemple 1.9 Montrer que le système suivant est compatible :

(S) { x + 2y = 5
2y = 4
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Proposition 1.10 Soient A∈Mn,p(K), X ∈Mp,1(K) et B∈M1,n(K) On considère le système matriciel
AX = B que l’on suppose compatible. Soit X0 une solution particulière de AX = B. Alors les solutions du
système AX = B sont de la forme X = X0+Y où Y est solution du système homogène AX = 0n,1.

Démonstration. Soit X0 une solution particulière du système AX = B, autrement dit : AX0 = B. Alors,

X est solution de AX = B ⟺ AX = B

⟺ AX = AX0 car AX0 = B (solution particulière)

⟺ A(X −X0) = 0

⟺ Y = X −X0 est solution de AX = 0

⟺ X = X0+Y avec Y solution de l’équation homogène

�

On retrouve un principe général de résolution, déjà croisé dans l’étude des Équations Différentielles, qui
est le suivant.

solution générale
du système

=
solution générale du

système homogène associée +
solution particulière

du système

Exemple 1.11 Résoudre le système linéaire suivant grâce au principe de résolution énoncé plus haut.

(S) { x − 2y = −3
−2x + 4y = 6
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1.3 Opérations élémentaires et matrices
On rappelle les opérations élémentaires sur les lignes d’un système linéaire (et donc sur les lignes de la

matrice associée). Ces opérations transforment un système linéaire en un système équivalent. Cela signifie
que l’ensemble des solutions reste identique. Ces opérations élémentaires s’interprètent par des produits
matriciels sur le système matriciel associé.

Opération élémentaire Calcul matriciel associé Effet sur la matrice In

Échange de deux lignes
Li ⟷ L j (i ≠ j)

Revient à multiplier A à
gauche par Ti, j ∶

Multiplication d’une
ligne par un scalaire

non nul
Li ⟵ λLi (λ ≠ 0)

Revient à multiplier A à
gauche par

Di(λ)= In+(λ −1)Ei,i ∶

Ajout d’un multiple de
ligne

Li ⟵ Li+λL j (i ≠ j)

Revient à multiplier A à
gauche par

Ti, j(λ) = In+λEi, j :

Les matrices Ti, j, Di(λ) et Ti, j(λ) sont inversibles. La multiplication à droite par les matrices d’opérations
élémentaires effectue les opérations analogues sur les colonnes de A.
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Exemple 1.12 Appliquer l’algorithme du pivot de Gauss au système linéaire suivant et suivre la trace de ce
qu’il se passe matriciellement.

(S)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2y + z = 1
x + y − z = 2
x + 2y − 3z = 0
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2 Calcul effectif de l’inverse d’une matrice
2.1 Systèmes de Cramer

Proposition 2.1 Soit A ∈Mn(R). On a

A est inversible ⟺ ∀B ∈Mn,1(R), l’équation AX = B admet une unique solution

Dans ce cas, la solution du système est
X = A−1B

et le système est appelé un système de Cramer.

! Cette proposition permet de
1. Calculer l’unique solution du système associé à AX = B, lorsque que l’on sait que A est inversible

et que l’on connaît son inverse ;
2. Montrer que A est inverse et calculer son inverse, en montrant que le système associé à AX = B

admet une unique solution
3. Montrer que A n’est pas inversible en montrant qu’il existe un second membre B (souvent le

vecteur nul) tel que le système associé à AX = B n’admet pas qu’une unique solution.

Exemple 2.2 — Utilisation 1. On considère le système linéaire suivant

(S)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x − 2y + 3z = 1
−x + 2y − z = 2
3x − 10y + 2z = −3

1. Donner l’écriture matricielle de ce système.
2. Donner l’ensemble des solutions de ce système en admettant que A est inversible et que son inverse

est donné par

A−1
=

1
2

⎛
⎜⎜
⎝

−6 −26 −4
−1 −5 −1
4 14 2

⎞
⎟⎟
⎠
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Exemple 2.3 — Utilisation 2. On considère la matrice A suivante

A =
⎛
⎜⎜
⎝

0 1 1
1 1 0
1 1 1

⎞
⎟⎟
⎠
.

Montrer que A est inversible et déterminer son inverse.
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Proposition 2.4 Soit A ∈Mn(K). Notons C1, . . . ,Cn ses colonnes
• Si A possède une ligne ou une colonne nulle alors A n’est pas inversible.
• S’il existe a1, . . . ,an non tous nuls tels que

a1C1+⋯+anCn = 0n,1

alors A n’est pas inversible.

Exemple 2.5 — Utilisation 3. On considère la matrice A suivante

A =
⎛
⎜⎜
⎝

0 1 1
1 1 0
1 0 −1

⎞
⎟⎟
⎠
.

Montrer que A n’est pas inversible.
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Exemple 2.6 Déterminer si la matrice suivante est inversible.

A =
⎛
⎜⎜
⎝

0 1 −1
0 2 0
0 −1 0

⎞
⎟⎟
⎠
.

2.2 Par opérations élémentaires sur la matrice
Pour trouver l’inverse d’une matrice inversible, plutôt que de raisonner sur le système linéaire associé,

on peut directement raisonner sur la matrice, ce qui est souvent plus simple.

Proposition 2.7 Les opérations élémentaires préservent l’inversibilité.

Proposition 2.8 Une matrice est inversible si et seulement si l’on peut la transformer par des opérations
élémentaires en une matrice triangulaire supérieure avec tous les coefficients diagonaux non nuls.
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Exemple 2.9 Déterminer l’inversibilité des deux matrices suivantes.

A1 =
⎛
⎜⎜
⎝

2 2 3
1 −1 0
−1 2 1

⎞
⎟⎟
⎠

et A2 =
⎛
⎜⎜
⎝

1 1 −1
0 2 1
−1 3 3

⎞
⎟⎟
⎠
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Pour obtenir l’inverse d’une matrice inversible, il ne faut pas s’arrêter à une forme triangulaire supérieure,
il faut aller plus loin et faire apparaître la matrice identité.

Proposition 2.10 Soit A ∈Mn(K). Si l’on peut transformer A par des opérations élémentaires que sur
les lignes (ou que sur le colonnes) en la matrice In alors A est inversible et la même suite d’opérations
élémentaires (dans le même ordre) sur les lignes de In donne A−1.

Idée de preuve.
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Exemple 2.11 Soit A =
⎛
⎜⎜
⎝

1 2 −1
2 4 −1
−2 −5 3

⎞
⎟⎟
⎠

. Étudier son inversibilité.
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