1
1.1

(16. Limite d’une suite

Limite d’une suite

Suites convergentes
Définition 1.1 On dit qu’une suite (i, ),en converge vers £ € R si

[ —

Ve>0 , dngeN |, Vnzng , u, €[l—¢e,l+¢€]
L. Y - A . \ﬂ_) %—J
Pour toute précision (aussi petite soit-elle) £>0 j] existe un rang nyp 2 partir duquel tous les termes sont dans la bande de largeur € autour de £

autrement dit si,
Ve>0,dnyg e N,Vn=ng,|u,— | <€

Si (u,,)en admet une limite finie alors celle-ci est unique. On note

{= lim u, ou u, — /{
n—+00 n—+00
Up , .
l+e—— ; -
Y] k,,',,,,,_,,_,,:.,,-:,ﬂ,,_:,:_,,-L',‘,-::-;,
(- ¢ ——— =
no n
Idée de preuve de I'unicité de la limite.
by —¢€ /4 l+¢ ly—¢€ U lr+€
€ € €
|
Exemple 1.2 Conjecturer la limite des suites suivantes a partir de leur représentation dans le plan.
+ + + + + + + + > + + + + + >
Représentation dans le plan de la suite (u,),en ol Représentation dans le plan de la suite (i, ),en ol
VneN, = a VneN',  u,=(-1)"
Conjecture 2 partir du graphe : Conjecture a partir du graphe :
1724
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Exemple 1.3 Soit a € R. On considere la suite (u,),en constante égale a a, ¢’est-a-dire
VneN, U, =a

Montrer que la suite (u,),en converge vers a.

Exemple 1.4 Démontrer que la suite ( ) converge vers 0.

1
n/ne N*
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Cette définition «avec les €» permet aussi, connaissant la convergence d’une suite, d’en déduire une
«localisation» des termes de la suite et donc d’obtenir des majorations/minorations.
Exemple 1.5 Soit (i, ),cn une suite convergeant vers 1. Montrer qu’a partir un certain rang, tous les termes
de la suite sont minorés par %, autrement dit, montrer que

1
dng e N,Vn = ngy,u, = 3

Proposition 1.6 Toute suite convergente est bornée.

La réciproque est fausse : la suite ((—1)"),en est bornée, mais ne converge pas.

1.2 Suites divergeant vers I'infini
Définition 1.7 Soit (u,),en une suite réelle.
1. On dit que (u,),en tend vers +00, ce que I’on note u, —> +00, lorsque :
(]

n—+
VA€eR, dny e N,Vn = ngy, u, = A.

2. On dit que (u,),ey tend vers —oo, ce que I’on note u, —> —o0, lorsque :
[e¢]

n—+

VB eR,dny e N,VYn = ny, u, <B.

Dire qu’une suite (u,),eN tend vers +00 signifie que, quel que soit le réel A (aussi grand soit-il), on
peut trouver un rang (donné par ng) a partir duquel tous les termes de la suite (Mn071/ln0+] ,...) sont

supérieurs a A.
uy, Uy

no n
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Exemple 1.8 Démontrer que la suite (1), y tend vers +oo.

1.3 Limites possibles pour une suite

2.1

En résumé, une suite au voisinage de +0o peut se comporter de trois manieres possibles.
* Soit elle admet une limite finie.

* Soit elle diverge vers 0o (phénomene "d’explosion").

* Soit elle n’admet pas de limite (phénomene "oscillations").

Proposition 1.9 Une suite tendant vers +00 n’est pas majorée.

La réciproque est fausse : la suite ((—1)"n),en n’est pas majorée mais ne tend pas vers +0o (elle
n’admet pas de limite.

Calculs de limite

Limite de référence
a) Limite des suites usuelles.

! . L. . 1
L]
! . . 1 o ©
°
° i ° °
| S °
°
° + + + + + 4 1 L + 4 4 1
Représentation dans le plan des suites : Représentation dans le plan des suites :
. .
e Vn eN u,=+n e Vn eN*, u, = Inn
e VYneN, u,=n
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Limite Exemples Exemples
. .. . a . 4 . 3
Puissance positive (a > 0) lim n = lim n = lim n2 =
n—+00 n—+00 n—+0o
Puissance négative (@ >0) | lim n “= lim — = lim — = lim n =
n—+0o n—+oo n n—+00 p n—+00
Racine carrée lim /n=
n—+00
. S . _ . _ . ny _
Exponentielle (a > 0) nl}inoo exp(an) nl}inoo exp(n) nl}l}loo exp(3)
1
Logarithme (a > 0) lim (In(n))* = lim In(n) = lim (In(n))3 =
n—+00 n—+00 n—+0o

b) Limite d’une suite géométrique.
Pour les suites géométriques, la limite dépend de la raison.

Représentation dans le plan des suites :

e VneN u,=(-1)"(g=-1<-1)

Raison Limite Exemples Exemples
. . n_ . 1 n_ _1 n _
E ngg—nooq B nBl-;—noo(7) B n—>+oo( 8)
. . n_ . n _ 5\" -
Si e = im, 2= (3)
. _ . n _ . n _
Sigs< -1 ((=1)"nen ((=3)")nen
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Exemple 2.1 Déterminer la limite de suite (u,),en définie par

2" 3"
VneN, un=w

& Gestes Invisibles/Automatismes. On commencer par évaluer la limite “a 1’0eil” pour com-
prendre si on est face a une FI ou pas. On a

. n . n . n
lim 2" =400, lim3 =400, lim5 =400
n—0oo n—00 n—0o

Donc, on est face a deux FI de la forme « +00 — 00 ». Pour s’en débarrasser, on factorise par le
terme «le plus fort».

Exemple 2.2 Déterminer la limite de suite (u,),en définie par

VneN, u, =n"
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2.2 Opération sur les limites

A partir des limites usuelles, on peut en déduire des nouvelles limites en effectuant des opérations sur les
limites. Dans les tableaux, FI signifie forme indéterminée. Cela veut dire que I’opération n’a pas de résultat
général, il faudra traiter les exemples au cas pas cas. Les cases non remplies se déduisent par symétrie. Les
lettres £ et ¢’ désignent des nombres réels. (La regle des signes donne le signe du produit ou du quotient.

a) Somme

Une seule forme indéterminée peut apparaitre lorsque I’on étudie la limite d’une somme :
+00 — 00

Pour la forme indéterminée « +00 — 00 », il faut traiter au cas par cas.

lim n= et lim —n= mais lim (n—n)=
n—+0o n—+0oo n—+00

lim 2n= et lim —n= mais lim (2n—n) =
n—+00 n—+00 n—+00

Les autres regles de calcul sont «relativement intuitives».

) B
¢ + / (+7
{ + +00 +00
4 + —00 —00
+00 + +00 +00
—00 + —00 —00
+00 + —00 F L

Exemple 2.3 Déterminer la limite suivante (si elle existe) :

lim Van+1—+/n

n—oo
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b) Produit

Une seule forme indéterminée peut apparaitre lorsque 1’on étudie la limite d’un produit :

0 X oo

Pour la forme indéterminée « 0 X 0o », il faut traiter au cas par cas.

lim - = et lim n= mais lim Lxn=
n—+oo 1t n—+00 ) n—+oo 1t )
lim 1= et lim n” = mais lim {xn®=
n—+oo n—+00 n—+oo
lim lz = et lim n= mais lim L, Xn=
n—+00 I n—+0o0o n—+o0o I
lim u, X lim v, lim u, Xv,
n—+0o n—+00 n—+00
] ]
/ X 14 £x/
£+ 0 X +00 +00
+ 00 X + 00 + 00
0 X +o00 F L

c) Quotient

On suppose ici que, pour tout n € N, v, # 0.

Une seule forme indéterminée peut apparaitre lorsque I’on étudie la limite d’un quotient :

Pour la forme indéterminée « 0/0 », il faut traiter au cas par cas.

1

1
lim = = et lim 1= mais lim & =
n—+oo n—+oo n—+oo 1
ln
lim 1= et lim 4= mais lim 2 =
n—+oo 1t n—+oo 1 n—+00 iz
"1
2
lim Lz = et im - = mais lim = =
n—+oo n—+oo n—+oo 1
n
lim u lim v lim u,/v
no+oo " / no+o0 ' || no+oo nlVn
I
1 / C+0 7
+
Y4 / +00 0+
+
2+ 0 / 0 too
*
+ oo / 0 +oo
+00 / +o00 F L
0 / 0 F L
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Exemple 2.4 Calculer les limites suivantes a 1’aide des limites usuelles et des opérations.

Suite Raisonnement Limite

VneN, un=n2+%

VneN*, u, = —2In(n)

Proposition 2.5 — Composition de limites. Soit (u,),cn une suite réelle et f une fonction telle que,
pour tout n € N, f(u,) est bien définie. Si,

lim u, =¢ € RU{—00,+00} et lin;f(x)=aeRu{—oo,+oo}
n—o0o XL

alors,
lim f(u,) = .
n—00

Exemple 2.6 Calculer les limites suivantes.

Suite Raisonnement Limite

n

VneN, u,=¢

VneN* u,=/2+

S =

Exemple 2.7 Déterminer la limite de la suite (u,,),»» définie par

1
Vn=2, u, = (2n) )
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Proposition 2.8 Soient (u,),cN €t (V,)nen deux suites réelles. Si (u,),en converge vers 0 et (v,,),en est
bornée alors le produit (u,v,),cn converge vers 0.

Exemple 2.9 Déterminer la limite de la suite (uy, ),y définie par

sinn
VneN, Up = ==
2.3 Résoudre une forme indéterminée
a) Croissances comparées
Iy a 4 formes indéterminées :
%)
«K+00 —00 » «(X 00 » & =» «%»

Le théoréme suivant donne la résolution de ces formes indéterminées dans certains cas bien particuliers.

Proposition 2.10 — Croissances comparées. Soienta > 0,b>0etg>1.0na

o 1 (In(n))" —0 i i n’ ~0 ( . n’ _0) A iF (Inn)*
1) Jlim s ii) Jlim po enpart. lim -z = iii) im

On peut retenir que
a b n
(Inn)" << n << gq (avec g>1)
~ -
n'<<n?<<... 2"<<3<<...

c’est-a-dire que le logarithme est plus faible que les puissances, les puissances étant plus faibles que les
suites géométrique de raison > 1. Pour formaliser cette notion de «suite plus faible qu’une autre», on
peut introduire la définition suivante.

Définition 2.11 Soient (u,,),en €t (v,,)en deux suites réelles telle que (v, ),en est non nulle & partir d’un
certain rang. On dit que (u,),en est négligeable devant (v, ),cn si

u
ML

Vn n—+0o
On note u, = o(v,).

Avec cette nouvelle notation, on peut ré-écrire le théoreme de croissances comparées.

Proposition 2.12 — Croissances comparées. Soienta > 0,b>0etg>1.0na

i) (In(n))* = o(n”) i) n” = o(g") iii) (Inn)* = o(g")
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Exemple 2.13 Dans chacun des cas, choisir la bonne relation de comparaison entre les deux suites (i, ) en
et (V)nen-

Suite (4, )zen Suite (v,),en Comparaison Justification
VneNu,=n VnEN,v,,=n2
VnEN*,u,,=’lZ VnEN*,vn=ni2
VneN,u,=2" VneN,v,=3"

Vn € N,u, = In(n) VneN,v,=n

VnEN,u,,zn2 VYneN,v, =2"

Lorsqu’on fait face a une forme indéterminée, on peut factoriser par le terme dominant puis de conclure
en utilisant les croissances comparées.

Exemple 2.14 Etudier la limite de la suite (i, ) ey définie par
VneN*, u,,=1n(n)—n5

A A priori, on est face a une FI de la forme +00 — 00. Mais les croissances comparées nous
donnent I'idée que c’est «n” qui va gagner contre In(n)» (en fait In(n) = o(n”)) et donner la
valeur de la limite qui va donc étre —oo. Pour formaliser, cela on factorise par le coefficient
dominant.
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L’idée, illustrée sur I’exemple précédent, est que, dans une somme, les termes les plus faibles (dixit les
croissances comparées) peuvent étre oubliés. Seul le terme le plus fort importe et va donner la valeur de la
limite. On peut formaliser cela grice a la notion équivalent.

Définition 2.15 Soient (i, ) en €t (v, )nen deux suites réelles telle que (v,,),en est non nulle a partir d’un
certain rang. On dit que (u, ), est équivalente a (v,,),ecn si

un
L

Vn n—+0o
On note u, ~ v,.
| Définition 2.16 Si u, ~ v,, alors les deux suites (i, ),en €t (v, )pen ont la méme limite.

Exemple 2.17 Etudier la limite de la suite (i, ),en définie par

VneN*, un=ln(n)—n5

Exemple 2.18 Donner un équivalent simple pour les suites suivantes (on ne demande pas ici de justifier) et
en déduire sa limite.

Suite FI? Equivalent Limite

VnEN,un=n2—3n+2

VneN* u, =In(n) _—

VYneN,u,=3"-2"

3
_ 2n =5n+1
Vne N,un i

e'+n
VneNu, = T
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3
3.1

Théorémes d’existence de limites

Théoréme d’encadrement

Proposition 3.1 — Existence de limite par encadrement. Soient (u,),en, (Vn)nens (Wn)nen trois
suites réelles. On suppose que
(H1) Pour toutn € N, v, < u, < w,, (ou seulement a partir d’un certain rang)
(H2) Les suites (v,,)qen €t (W, )en convergent vers un méme réel £.
Alors,
* la suite (u,),en admet une limite finie,
* et plus précisément, la suite (u,),en converge vers /.

Attention, cette proposition est différente de la Proposition 4.7, concernant le passage a la limite dans
une inégalité. Dans la Proposition 4.7, on suppose que toutes les suites convergent pour en déduire
une information sur leurs limite. Le théoréme d’encadement au contraire, sert a montrer qu’une suite
converge et donne la valeur de la limite.

Exemple 3.2 Soit (u,),ecn une suite réelle telle que
VneN, n<u, <2n.

In(uy,)
In(n)

Montrer que la suite ( ) admet une limite finie et la déterminer.
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Proposition 3.3 Soient (u,)en €t (v,)nen des suites réelles, avec pour tout n € N, v, = 0. On suppose
que
(H1) Pour tout n € N, |u,| < v, (ou seulement 2 partir d’un certain rang)
(H2) La suite (v, ),en converge vers 0.
Alors,
* la suite (u,),en admet une limite finie,
* et plus précisément, la suite (u,),cn converge vers 0.

(=1)"+1

) converge vers 0.
n neN*

Exemple 3.4 Démontrer que la suite (
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Proposition 3.5 Soient (u,),en €t (v, )qen des suites réelles, avec pour tout n € N, v, = 0. Soit £ € R.
On suppose que

(H1) Pour tout n € N, |u, — €| < v, (ou seulement 2 partir d’un certain rang)

(H2) La suite (v, ),en converge vers 0.

Alors,
* la suite (u,),en admet une limite finie,
* et plus précisément, la suite (u,),cn converge vers £.

Exemple 3.6 Soit (u,),en une suite telle que

1
VneN, |un—l|52—n

Montrer que la suite (u,),en converge et déterminer sa limite.

Proposition 3.7 — Existence de limite par majoration/minoration. Soient (u,),en €t (V,)nen deux
suites réelles telles que pour tout n € N, u,, < v, (ou seulement a partir d’un certain rang).

¢ [Minoration] Si 4, — 400, alorsv, — +00.
n

—+00 n—+00
e [Majoration] Siv, — —o00,alorsu, — —o00.
n—+0oo n—+00

Exemple 3.8 Déterminer la limite des suites suivantes grace a une minoration/majoration.

Suite Encadrement Limite

VneN*, u, =(-1)"+1In(n)

2 —nsin(nm+1
_enl(n )

VneN, v,=-n
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3.2

Théoréme de la limite monotone

Proposition 3.9 — Limite monotone.
1. Soit (u,),eN une suite croissante.
* Soit la suite (u,),en est majorée et alors elle converge.
* Soit elle diverge vers +00.
2. Soit (u,),en une suite décroissante.
* Soit la suite (u,),en est minorée et alors elle converge.
* Soit Sinon elle diverge vers —00.

La suite est croissante et majorée, elle converge La suite est croissante et non majorée, elle di-
vers un réel. verge donc vers +00.

Exemple 3.10 On considere la suite réelle (i, ),en définie par,

1
uy = -3 et VneN, Upyl = Zun+3.
Montrer que la suite est majorée par 4 et en déduire qu’elle converge vers un réel a déterminer.

& Gestes Invisibles/Automatismes. Pour montrer que la suite converge, on va montrer qu’elle
est majorée et croissante. Attention, cette méthode permet de démontrer que la suite converge
mais ne donne pas la valeur de la limite. Pour trouver la valeur de la limite, on utilise apres la
relation de récurrence définissant la suite.

M. BOURNISSOU
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Exemple 3.11 On considere la suite réelle (i, ),en définie par,
uy =0 et VneN, Upsl = Uy +€"

Montrer que la suite diverge vers +00.
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3.3 Suites adjacentes

Proposition 3.12 Soient (u,,),en €t (v,)nen deux suites réelles. On dit que les suites (i, ) en €t (Vi) pen
sont adjacentes lorsque

(H1) la suite (u,),en €st croissante,

(H2) la suite (v, ),y est décroissante,

(H3) et la suite (1, — v, )nen tend vers 0.

Dans ce cas,

(R1) les deux suites convergent et ont la méme limite ¢
(R2) et on a I’encadrement suivant

VneN, u, <l <v,

Exemple 3.13 On considere (u,),en* €t (v,)nen* deux suites réelles définies par

n
1 1
VneN", ”’l:ZF et VnEN*, vn=un+ﬁ
Pl !
Montrer que les deux suites convergent.
& Gestes Invisibles/Automatismes. On demande d’étudier simultanément la convergence de
deux suites qui sont imbriquées. On peut essayer de montrer qu’elles sont adjacentes.
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Proposition 3.14 Soit x € R. On pose

[10"x] [10"x]+1
VnEN, dn=1—0n et VneN, bn=1—0n

Pour tout n € N, a,, est appelé valeur décimale approchée de x par défaut a 10™" preés et b, sa valeur
décimale approchée par exces a 10" pres. Les suites (a,)nen et (b, )nen sont adjacentes, a valeurs

décimales et de limite commune x.

Proposition 3.15 Tout nombre réel est limite d’une suite de rationnels.

4 Propriétés sur les limites

4.1 Suites exiraites
Définition 4.1 Soit (u,),en une suite réelle. On appelle suite extraite (ou sous-suite) de (u,,),en toute

suite (v,,),en de la forme v, = Ugp(n) OU @ : N — N est une application strictement croissante.

Illustration :

(un)ners | w0 s us r o

(Vn )neN Vo Vi V2 V3 V4 Vs

Les premiceres valeurs de ¢ sont

n 0|1]2|3]4|5]| 6
on) |1 [3]|4]6[8|9]10
n 0 1 2 3 4
Uy 0 up up us3 Uy
Vn = Un+1
Wnp = Up+2
In = Uy
Pn = U2n
T'n = Un+1

Proposition 4.2 Si lim u, = £, alors toutes les suites extraites de (u,),en tendent aussi vers £ :
n—+00

lim wu,4p =4, lim u,_; =¥, lim wuy, =/, etc.
n—+00

lim Uyl = /g,
n—+00 n—+00 n—+00

Ainsi, toute suite extraite d’une suite convergente converge vers la méme limite. Pour montrer qu’une
suite diverge, on se sert souvent de la contraposée de ce théoreme.

Proposition 4.3 Si on trouve deux suites extraites de (i, ),en qui n’ont pas la méme limite, alors la suite

() pen diverge.
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Exemple 4.4 Considérons la suite (u,),ecn définie par, pour tout n € N, u,, = (—1)". Montrer que la suite
(up)nen diverge.

Proposition 4.5 Soit (u,),cn une suite réelle. Si les suites extraites (1, ),en €t (42,41 )nen ONt toutes les
deux la méme limite ¢, alors (u,),en tend vers £.

Autrement dit, si les suites extraites paire et impaire convergent vers la méme limite, alors la suite de
départ (u,),eN converge vers cette méme limite.

Exercice 4.6 Soit (u,),en* la suite définie par
(=1)'n

Y EN*, =
" T T yn

Etudier la convergence de cette suite.
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4.2 Passage a la limite dans une inégalité

Proposition 4.7 Soient (u,)en et (v,)qen deux suites réelles. On suppose que :
(H1) La suite (u,),en converge vers un réel £ ;

(H2) La suite (v,),en converge vers un réel 45 ;

(H3) Pourtoutn € N, u,, < v, ouu, <v,.

Alors

0 <ty

Méme si I’inégalité sur les termes des suites est stricte, on n’obtient seulement une inégalité large sur
les limites. Par exemple,

1 . 1
VneN, 7>0 pourtant nl}grnoo 7=0=20

Exemple 4.8 Soit (u,),en la suite définie par
uy =0 et pour toutn € N, u, | =+/2+u,.

On admet les deux assertions suivantes.
(P1) On sait que pour tout n € N, u,, € [0,2] (par récurence.)

(P2) On sait que la suite (u,),en converge vers un certain £ € R (par théoréme de la limite monotone).

Démontrer que la suite (i, ),en converge vers 2.
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Bréve extension aux suites complexes
Définition 5.1 Soit (u,),en une suite complexe. Soit £ € C. On dit que (u,),en converge vers £ si

Ve>0,dngeN, VneN, (nzny= |u,—{| <€)

(Ici, | - | désigne le module du nombre complexe et non plus la valeur absolue.) Une suite qui n’est pas

convergente est dite divergente.

On peut facilement se ramener a I’étude de suites réelles grace au résultat suivant.

Proposition 5.2 Soit (u,),en une suite complexe. Soit £ € C. La suite (u,),en converge vers £ si et
seulement si les suites réelles (Re(u,)),en et (Im(u,)),en convergent respectivement vers Re(£) et

Im(?).

Exemple 5.3 Etudier la convergence de la suite (u,),en définie par

1 1).
VneN, un=1+?+(2+ﬁ)l
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Proposition 5.4 Soient (u,),en une suite complexe et £ € C.
* Si (u,),en converge vers A alors (|u,|),en converge vers |2 ].
* Si (|u,|)nen converge vers 0, alors (u,),en converge vers 0.

Ainsi, pour démontrer qu’une suite complexe converge vers 0, inutile d’étudier les suites réelles des

parties réelles et imaginaires, il suffit de montrer que la suite réelle des modules converge vers 0.

Exemple 5.5 Etudier la convergence de la suite (u, ) ey définie par

VneN,

(1+)"
:T

Ce qui reste valable

Ce qui n’est plus valable

Unicité de la limite

Majorant/minorant

Une suite convergente est bornée

Monotonie

Opérations sur les limites

Limites infinies

Suites extraites

Passage a la limite des <

Majoration de |u, — £| par un réel

Théoreme d’encadrement

Théoreme de la limite monotone

Suites adjacentes
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