
16. Limite d’une suite

1 Limite d’une suite
1.1 Suites convergentes

Définition 1.1 On dit qu’une suite (un)n∈N converge vers ` ∈ R si

∀ε > 0Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Pour toute précision (aussi petite soit-elle) ε>0

, ∃n0 ∈ N
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

il existe un rang n0

, ∀n ⩾ n0Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
à partir duquel

, un ∈ [`− ε, `+ ε]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

tous les termes sont dans la bande de largeur ε autour de `

autrement dit si,
∀ε > 0,∃n0 ∈ N,∀n ≥ n0, ∣un− `∣ ≤ ε

Si (un)n∈N admet une limite finie alors celle-ci est unique. On note

` = lim
n→+∞

un ou un ⟶n→+∞
`

un

n

`

n0

`+ ε

`− ε

Idée de preuve de l’unicité de la limite.

`2`2− ε `2+ ε

ε ε

• ••
`1`1− ε `1+ ε

•• •
ε

�

Exemple 1.2 Conjecturer la limite des suites suivantes à partir de leur représentation dans le plan.
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Représentation dans le plan de la suite (un)n∈N où

∀n ∈ N∗, un =
1
n

Conjecture à partir du graphe :

Représentation dans le plan de la suite (un)n∈N où

∀n ∈ N∗, un = (−1)n

Conjecture à partir du graphe :
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Exemple 1.3 Soit a ∈ R. On considère la suite (un)n∈N constante égale à a, c’est-à-dire

∀n ∈ N, un = a

Montrer que la suite (un)n∈N converge vers a.

Exemple 1.4 Démontrer que la suite ( 1
n)n∈ N∗

converge vers 0.
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Cette définition «avec les ε» permet aussi, connaissant la convergence d’une suite, d’en déduire une
«localisation» des termes de la suite et donc d’obtenir des majorations/minorations.

Exemple 1.5 Soit (un)n∈N une suite convergeant vers 1. Montrer qu’à partir un certain rang, tous les termes
de la suite sont minorés par 1

2 , autrement dit, montrer que

∃n0 ∈ N,∀n ≥ n0,un ≥
1
2

Proposition 1.6 Toute suite convergente est bornée.

! La réciproque est fausse : la suite ((−1)n)n∈N est bornée, mais ne converge pas.

1.2 Suites divergeant vers l’infini
Définition 1.7 Soit (un)n∈N une suite réelle.

1. On dit que (un)n∈N tend vers +∞, ce que l’on note un ⟶n→+∞
+∞, lorsque :

∀A ∈ R, ∃n0 ∈ N,∀n ⩾ n0, un ⩾ A.

2. On dit que (un)n∈N tend vers −∞, ce que l’on note un ⟶n→+∞
−∞, lorsque :

∀B ∈ R,∃n0 ∈ N,∀n ⩾ n0, un ⩽ B.

! Dire qu’une suite (un)n∈N tend vers +∞ signifie que, quel que soit le réel A (aussi grand soit-il), on
peut trouver un rang (donné par n0) à partir duquel tous les termes de la suite (un0 ,un0+1, . . .) sont
supérieurs à A.

un

n

A

n0

un

n

B

n0
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Exemple 1.8 Démontrer que la suite (n)n∈ N tend vers +∞.

1.3 Limites possibles pour une suite
En résumé, une suite au voisinage de +∞ peut se comporter de trois manières possibles.
• Soit elle admet une limite finie.
• Soit elle diverge vers ±∞ (phénomène "d’explosion").
• Soit elle n’admet pas de limite (phénomène "oscillations").

Proposition 1.9 Une suite tendant vers +∞ n’est pas majorée.

! La réciproque est fausse : la suite ((−1)nn)n∈N n’est pas majorée mais ne tend pas vers +∞ (elle
n’admet pas de limite.

2 Calculs de limite
2.1 Limite de référence

a) Limite des suites usuelles.

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
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−
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−

•
• • • • • •
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∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

−

−

−

−

−

•

•

•

•
•
• • • • • •

Représentation dans le plan des suites :
• ∀n ∈ N∗, un =

1
n

• ∀n ∈ N, un =
√

n
• ∀n ∈ N, un = n

Représentation dans le plan des suites :
• ∀n ∈ N, un = exp(n)
• ∀n ∈ N∗, un = lnn
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Limite Exemples Exemples

Puissance positive (a > 0) lim
n→+∞

na
= lim

n→+∞
n4
= lim

n→+∞
n

3
2 =

Puissance négative (a > 0) lim
n→+∞

n−a
= lim

n→+∞

1
na = lim

n→+∞

1
n3 = lim

n→+∞
n−7

=

Racine carrée lim
n→+∞

√
n =

Exponentielle (a > 0) lim
n→+∞

exp(an) = lim
n→+∞

exp(n) = lim
n→+∞

exp( n
2) =

Logarithme (a > 0) lim
n→+∞

(ln(n))a
= lim

n→+∞
ln(n) = lim

n→+∞
(ln(n))

1
3 =

b) Limite d’une suite géométrique.
Pour les suites géométriques, la limite dépend de la raison.

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
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•
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••
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•
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Représentation dans le plan des suites :
• ∀n ∈ N∗, un = ( 1

2)
n

(q = 1/2 ∈]−1,1[)
• ∀n ∈ N, un = (−1)n (q = −1 ⩽ −1)
• ∀n ∈ N, un = 2n (q = 2 > 1)

Raison Limite Exemples Exemples

Si q ∈]−1,1[ lim
n→+∞

qn
= lim

n→+∞
( 1

7)
n
= lim

n→+∞
(− 1

8)
n
=

Si q > 1 lim
n→+∞

qn
= lim

n→+∞
2n
= lim

n→+∞
( 5

4)
n
=

Si q = 1 lim
n→+∞

qn
= 1 lim

n→+∞
1n
=

Si q ⩽ −1 ((−1)n)n∈N ((−3)n)n∈N
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Exemple 2.1 Déterminer la limite de suite (un)n∈N définie par

∀n ∈ N, un =
2n−3n

3n−5n

k Gestes Invisibles/Automatismes. On commencer par évaluer la limite “à l’oeil” pour com-
prendre si on est face à une FI ou pas. On a

lim
n→∞

2n
= +∞, lim

n→∞
3n
= +∞, lim

n→∞
5n
= +∞

Donc, on est face à deux FI de la forme «+∞−∞ ». Pour s’en débarrasser, on factorise par le
terme «le plus fort».

Exemple 2.2 Déterminer la limite de suite (un)n∈N définie par

∀n ∈ N, un = nn
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2.2 Opération sur les limites

À partir des limites usuelles, on peut en déduire des nouvelles limites en effectuant des opérations sur les
limites. Dans les tableaux, FI signifie forme indéterminée. Cela veut dire que l’opération n’a pas de résultat
général, il faudra traiter les exemples au cas pas cas. Les cases non remplies se déduisent par symétrie. Les
lettres ` et `′ désignent des nombres réels. (La règle des signes donne le signe du produit ou du quotient.

a) Somme

! Une seule forme indéterminée peut apparaître lorsque l’on étudie la limite d’une somme :

+∞−∞

Pour la forme indéterminée « +∞−∞ », il faut traiter au cas par cas.

lim
n→+∞

n = et lim
n→+∞

−n = mais lim
n→+∞

(n−n) =
lim

n→+∞
2n = et lim

n→+∞
−n = mais lim

n→+∞
(2n−n) =

Les autres règles de calcul sont «relativement intuitives».

lim
n→+∞

un + lim
n→+∞

vn lim
n→+∞

un+ vn

` + `
′

`+ `
′

` + +∞ +∞

` + −∞ −∞

+∞ + +∞ +∞

−∞ + −∞ −∞

+∞ + −∞ F. I.

Exemple 2.3 Déterminer la limite suivante (si elle existe) :

lim
n→∞

√
n+1−

√
n
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b) Produit

! Une seule forme indéterminée peut apparaître lorsque l’on étudie la limite d’un produit :

0×∞

Pour la forme indéterminée « 0×∞ », il faut traiter au cas par cas.

lim
n→+∞

1
n = et lim

n→+∞
n = mais lim

n→+∞
1
n ×n =

lim
n→+∞

1
n = et lim

n→+∞
n2
= mais lim

n→+∞
1
n ×n2

=

lim
n→+∞

1
n2 = et lim

n→+∞
n = mais lim

n→+∞
1
n2 ×n =

lim
n→+∞

un × lim
n→+∞

vn lim
n→+∞

un× vn

` × `
′

`× `
′

`≠ 0 × ±∞ ±∞

±∞ × ±∞ ±∞

0 × ±∞ F. I.

c) Quotient
On suppose ici que, pour tout n ∈ N, vn ≠ 0.

! Une seule forme indéterminée peut apparaître lorsque l’on étudie la limite d’un quotient :

0
0 et

∞
∞

Pour la forme indéterminée « 0/0 », il faut traiter au cas par cas.

lim
n→+∞

1
n = et lim

n→+∞
1
n = mais lim

n→+∞

1
n
1
n

=

lim
n→+∞

1
n = et lim

n→+∞
1
n2 = mais lim

n→+∞

1
n
1
n2

=

lim
n→+∞

1
n2 = et lim

n→+∞
1
n = mais lim

n→+∞

1
n2

1
n

=

lim
n→+∞

un / lim
n→+∞

vn lim
n→+∞

un/vn

` / `
′
≠ 0

`

`′

` / ±∞ 0±

`≠ 0 / 0± ±∞

±∞ / 0± ±∞

±∞ / ±∞ F. I.

0 / 0 F. I.
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Exemple 2.4 Calculer les limites suivantes à l’aide des limites usuelles et des opérations.

Suite Raisonnement Limite

∀n ∈ N, un = n2+ 1
n

∀n ∈ N∗, un = −2ln(n)

∀n ∈ N∗, un = n ln(n)

∀n ∈N∗, un = ( 2
3)

n (1+ 1
n)

∀n ∈ N∗, un =
√

n
e−n−1

Proposition 2.5 — Composition de limites. Soit (un)n∈N une suite réelle et f une fonction telle que,
pour tout n ∈ N, f (un) est bien définie. Si,

lim
n→∞

un = ` ∈ R∪{−∞,+∞} et lim
x→`

f (x) = α ∈ R∪{−∞,+∞}

alors,
lim

n→∞
f (un) = α.

Exemple 2.6 Calculer les limites suivantes.

Suite Raisonnement Limite

∀n ∈ N, un = e−n

∀n ∈ N∗, un =

√
2+ 1

n

Exemple 2.7 Déterminer la limite de la suite (un)n≥2 définie par

∀n ≥ 2, un = (2n)
1

ln(n)
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Proposition 2.8 Soient (un)n∈N et (vn)n∈N deux suites réelles. Si (un)n∈N converge vers 0 et (vn)n∈N est
bornée alors le produit (unvn)n∈N converge vers 0.

Exemple 2.9 Déterminer la limite de la suite (un)n∈N définie par

∀n ∈ N, un =
sinn

n

2.3 Résoudre une forme indéterminée
a) Croissances comparées

Il y a 4 formes indéterminées :

«+∞−∞ » « 0×∞ » «
0
0 » «

∞
∞ »

Le théorème suivant donne la résolution de ces formes indéterminées dans certains cas bien particuliers.

Proposition 2.10 — Croissances comparées. Soient a > 0,b > 0 et q > 1. On a

i) lim
n→∞

(ln(n))a

nb = 0 ii) lim
n→∞

nb

qn = 0 (en part. lim
n→∞

nb

ean = 0) iii) lim
n→∞

(lnn)a

qn = 0

! On peut retenir que
(lnn)a

<< nb

ÍÑÏ
n1
<<n2

<<...

<< qn

ÍÑÏ
2n
<<3n

<<...

(avec q > 1)

c’est-à-dire que le logarithme est plus faible que les puissances, les puissances étant plus faibles que les
suites géométrique de raison > 1. Pour formaliser cette notion de «suite plus faible qu’une autre», on
peut introduire la définition suivante.

Définition 2.11 Soient (un)n∈N et (vn)n∈N deux suites réelles telle que (vn)n∈N est non nulle à partir d’un
certain rang. On dit que (un)n∈N est négligeable devant (vn)n∈N si

un
vn
−−−−−→
n→+∞

0

On note un = o(vn).

Avec cette nouvelle notation, on peut ré-écrire le théorème de croissances comparées.

Proposition 2.12 — Croissances comparées. Soient a > 0,b > 0 et q > 1. On a

i) (ln(n))a
= o(nb) ii) nb

= o(qn) iii) (lnn)a
= o(qn)
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Exemple 2.13 Dans chacun des cas, choisir la bonne relation de comparaison entre les deux suites (un)n∈N
et (vn)n∈N.

Suite (un)n∈N Suite (vn)n∈N Comparaison Justification

∀n ∈ N,un = n ∀n ∈ N,vn = n2

∀n ∈ N∗,un =
1
n ∀n ∈ N∗,vn =

1
n2

∀n ∈ N,un = 2n ∀n ∈ N,vn = 3n

∀n ∈ N,un = ln(n) ∀n ∈ N,vn = n2

∀n ∈ N,un = n2 ∀n ∈ N,vn = 2n

Lorsqu’on fait face à une forme indéterminée, on peut factoriser par le terme dominant puis de conclure
en utilisant les croissances comparées.

Exemple 2.14 Étudier la limite de la suite (un)n∈N définie par

∀n ∈ N∗, un = ln(n)−n5

k À priori, on est face à une FI de la forme +∞−∞. Mais les croissances comparées nous
donnent l’idée que c’est «n5 qui va gagner contre ln(n)» (en fait ln(n) = o(n5)) et donner la
valeur de la limite qui va donc être −∞. Pour formaliser, cela on factorise par le coefficient
dominant.
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L’idée, illustrée sur l’exemple précédent, est que, dans une somme, les termes les plus faibles (dixit les
croissances comparées) peuvent être oubliés. Seul le terme le plus fort importe et va donner la valeur de la
limite. On peut formaliser cela grâce à la notion équivalent.

Définition 2.15 Soient (un)n∈N et (vn)n∈N deux suites réelles telle que (vn)n∈N est non nulle à partir d’un
certain rang. On dit que (un)n∈N est équivalente à (vn)n∈N si

un
vn
−−−−−→
n→+∞

1

On note un ∼ vn.

Définition 2.16 Si un ∼ vn, alors les deux suites (un)n∈N et (vn)n∈N ont la même limite.

Exemple 2.17 Étudier la limite de la suite (un)n∈N définie par

∀n ∈ N∗, un = ln(n)−n5

Exemple 2.18 Donner un équivalent simple pour les suites suivantes (on ne demande pas ici de justifier) et
en déduire sa limite.

Suite FI? Équivalent Limite

∀n ∈ N,un = n2−3n+2

∀n ∈ N∗,un = ln(n)−n5

∀n ∈ N,un = 3n−2n

∀n ∈ N,un =
2n3−5n+1

n2+1

∀n ∈ N,un =
en+n
n2+1
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3 Théorèmes d’existence de limites
3.1 Théorème d’encadrement

Proposition 3.1 — Existence de limite par encadrement. Soient (un)n∈N,(vn)n∈N,(wn)n∈N trois
suites réelles. On suppose que
(H1) Pour tout n ∈ N, vn ⩽ un ⩽ wn (ou seulement à partir d’un certain rang)
(H2) Les suites (vn)n∈N et (wn)n∈N convergent vers un même réel `.
Alors,

• la suite (un)n∈N admet une limite finie,
• et plus précisément, la suite (un)n∈N converge vers `.

! Attention, cette proposition est différente de la Proposition 4.7, concernant le passage à la limite dans
une inégalité. Dans la Proposition 4.7, on suppose que toutes les suites convergent pour en déduire
une information sur leurs limite. Le théorème d’encadement au contraire, sert à montrer qu’une suite
converge et donne la valeur de la limite.

Exemple 3.2 Soit (un)n∈N une suite réelle telle que

∀n ∈ N, n ⩽ un ⩽ 2n.

Montrer que la suite ( ln(un)
ln(n) ) admet une limite finie et la déterminer.
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Proposition 3.3 Soient (un)n∈N et (vn)n∈N des suites réelles, avec pour tout n ∈ N, vn ⩾ 0. On suppose
que
(H1) Pour tout n ∈ N, ∣un∣ ⩽ vn (ou seulement à partir d’un certain rang)
(H2) La suite (vn)n∈N converge vers 0.
Alors,

• la suite (un)n∈N admet une limite finie,
• et plus précisément, la suite (un)n∈N converge vers 0.

Exemple 3.4 Démontrer que la suite ( (−1)n+1
n )

n∈N∗
converge vers 0.
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Proposition 3.5 Soient (un)n∈N et (vn)n∈N des suites réelles, avec pour tout n ∈ N, vn ⩾ 0. Soit ` ∈ R.
On suppose que
(H1) Pour tout n ∈ N, ∣un− `∣ ⩽ vn (ou seulement à partir d’un certain rang)
(H2) La suite (vn)n∈N converge vers 0.
Alors,

• la suite (un)n∈N admet une limite finie,
• et plus précisément, la suite (un)n∈N converge vers `.

Exemple 3.6 Soit (un)n∈N une suite telle que

∀n ∈ N, ∣un−1∣ ≤ 1
2n

Montrer que la suite (un)n∈N converge et déterminer sa limite.

Proposition 3.7 — Existence de limite par majoration/minoration. Soient (un)n∈N et (vn)n∈N deux
suites réelles telles que pour tout n ∈ N, un ⩽ vn (ou seulement à partir d’un certain rang).

• [Minoration] Si un ⟶n→+∞
+∞, alors vn ⟶n→+∞

+∞.
• [Majoration] Si vn ⟶n→+∞

−∞, alors un ⟶n→+∞
−∞.

Exemple 3.8 Déterminer la limite des suites suivantes grâce à une minoration/majoration.

Suite Encadrement Limite

∀n ∈ N∗, un = (−1)n+ ln(n)

∀n ∈ N, vn = −n2− e−nsin(nπ+1)
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3.2 Théorème de la limite monotone

Proposition 3.9 — Limite monotone.
1. Soit (un)n∈N une suite croissante.

• Soit la suite (un)n∈N est majorée et alors elle converge.
• Soit elle diverge vers +∞.

2. Soit (un)n∈N une suite décroissante.
• Soit la suite (un)n∈N est minorée et alors elle converge.
• Soit Sinon elle diverge vers −∞.

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

−

−

−

−

−

−

−

−

•

•
• • • •

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

−

−

−

−

−

−

−

−

• • •
•
•
•

•

•

La suite est croissante et majorée, elle converge
vers un réel.

La suite est croissante et non majorée, elle di-
verge donc vers +∞.

Exemple 3.10 On considère la suite réelle (un)n∈N définie par,

u0 = −3 et ∀n ∈ N, un+1 =
1
4un+3.

Montrer que la suite est majorée par 4 et en déduire qu’elle converge vers un réel à déterminer.

k Gestes Invisibles/Automatismes. Pour montrer que la suite converge, on va montrer qu’elle
est majorée et croissante. Attention, cette méthode permet de démontrer que la suite converge
mais ne donne pas la valeur de la limite. Pour trouver la valeur de la limite, on utilise après la
relation de récurrence définissant la suite.
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Exemple 3.11 On considère la suite réelle (un)n∈N définie par,

u0 = 0 et ∀n ∈ N, un+1 = un+ eun

Montrer que la suite diverge vers +∞.
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3.3 Suites adjacentes

Proposition 3.12 Soient (un)n∈N et (vn)n∈N deux suites réelles. On dit que les suites (un)n∈N et (vn)n∈N
sont adjacentes lorsque
(H1) la suite (un)n∈N est croissante,
(H2) la suite (vn)n∈N est décroissante,
(H3) et la suite (un− vn)n∈N tend vers 0.
Dans ce cas,
(R1) les deux suites convergent et ont la même limite `
(R2) et on a l’encadrement suivant

∀n ∈ N, un ≤ ` ≤ vn

Exemple 3.13 On considère (un)n∈N∗ et (vn)n∈N∗ deux suites réelles définies par

∀n ∈ N∗, un =

n

∑
k=0

1
k!

et ∀n ∈ N∗, vn = un+
1
n!

Montrer que les deux suites convergent.
k Gestes Invisibles/Automatismes. On demande d’étudier simultanément la convergence de
deux suites qui sont imbriquées. On peut essayer de montrer qu’elles sont adjacentes.
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Proposition 3.14 Soit x ∈ R. On pose

∀n ∈ N, an =
⌊10nx⌋

10n et ∀n ∈ N, bn =
⌊10nx⌋+1

10n

Pour tout n ∈ N, an est appelé valeur décimale approchée de x par défaut à 10−n près et bn sa valeur
décimale approchée par excès à 10−n près. Les suites (an)n∈N et (bn)n∈N sont adjacentes, à valeurs
décimales et de limite commune x.

Proposition 3.15 Tout nombre réel est limite d’une suite de rationnels.

4 Propriétés sur les limites
4.1 Suites extraites

Définition 4.1 Soit (un)n∈N une suite réelle. On appelle suite extraite (ou sous-suite) de (un)n∈N toute
suite (vn)n∈N de la forme vn = uϕ(n) où ϕ ∶ N⟶ N est une application strictement croissante.

Illustration :

(un)n∈N u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 . . .

= = = = = = =

(vn)n∈N v0 v1 v2 v3 v4 v5 v6 . . .

Les premières valeurs de ϕ sont

n 0 1 2 3 4 5 6
ϕ(n) 1 3 4 6 8 9 10

n 0 1 2 3 4 . . .

un u0 u1 u2 u3 u4 . . .

vn = un+1 . . .

wn = un+2 . . .

tn = un−1

pn = u2n

rn = u2n+1

Proposition 4.2 Si lim
n→+∞

un = `, alors toutes les suites extraites de (un)n∈N tendent aussi vers ` :

lim
n→+∞

un+1 = `, lim
n→+∞

un+2 = `, lim
n→+∞

un−1 = `, lim
n→+∞

u2n = `, etc.

Ainsi, toute suite extraite d’une suite convergente converge vers la même limite. Pour montrer qu’une
suite diverge, on se sert souvent de la contraposée de ce théorème.

Proposition 4.3 Si on trouve deux suites extraites de (un)n∈N qui n’ont pas la même limite, alors la suite
(un)n∈N diverge.
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Exemple 4.4 Considérons la suite (un)n∈N définie par, pour tout n ∈ N, un = (−1)n. Montrer que la suite
(un)n∈N diverge.

Proposition 4.5 Soit (un)n∈N une suite réelle. Si les suites extraites (u2n)n∈N et (u2n+1)n∈N ont toutes les
deux la même limite `, alors (un)n∈N tend vers `.

Autrement dit, si les suites extraites paire et impaire convergent vers la même limite, alors la suite de
départ (un)n∈N converge vers cette même limite.

Exercice 4.6 Soit (un)n∈N∗ la suite définie par

∀n ∈ N∗, un =
(−1)nn

(−1)nn+
√

n

Étudier la convergence de cette suite.
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4.2 Passage à la limite dans une inégalité

Proposition 4.7 Soient (un)n∈N et (vn)n∈N deux suites réelles. On suppose que :
(H1) La suite (un)n∈N converge vers un réel `1 ;
(H2) La suite (vn)n∈N converge vers un réel `2 ;
(H3) Pour tout n ∈ N, un ⩽ vn ou un < vn.
Alors

`1 ⩽ `2

! Même si l’inégalité sur les termes des suites est stricte, on n’obtient seulement une inégalité large sur
les limites. Par exemple,

∀n ∈ N,
1
n > 0 pourtant lim

n→+∞

1
n = 0 ≥ 0

Exemple 4.8 Soit (un)n∈N la suite définie par

u0 = 0 et pour tout n ∈ N, un+1 =
√

2+un.

On admet les deux assertions suivantes.
(P1) On sait que pour tout n ∈ N, un ∈ [0,2] (par récurence.)
(P2) On sait que la suite (un)n∈N converge vers un certain ` ∈ R (par théorème de la limite monotone).

Démontrer que la suite (un)n∈N converge vers 2.
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5 Brève extension aux suites complexes
Définition 5.1 Soit (un)n∈N une suite complexe. Soit ` ∈ C. On dit que (un)n∈N converge vers ` si

∀ε > 0, ∃n0 ∈ N, ∀n ∈ N, (n ≥ n0⇒ ∣un− `∣ ≤ ε)

(Ici, ∣ ⋅ ∣ désigne le module du nombre complexe et non plus la valeur absolue.) Une suite qui n’est pas
convergente est dite divergente.

On peut facilement se ramener à l’étude de suites réelles grâce au résultat suivant.

Proposition 5.2 Soit (un)n∈N une suite complexe. Soit ` ∈ C. La suite (un)n∈N converge vers ` si et
seulement si les suites réelles (Re(un))n∈N et (Im(un))n∈N convergent respectivement vers Re(`) et
Im(`).

Exemple 5.3 Étudier la convergence de la suite (un)n∈N définie par

∀n ∈ N, un = 1+
1
2n +(2+

1
n) i
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Proposition 5.4 Soient (un)n∈N une suite complexe et ` ∈ C.
• Si (un)n∈N converge vers λ alors (∣un∣)n∈N converge vers ∣λ ∣.
• Si (∣un∣)n∈N converge vers 0, alors (un)n∈N converge vers 0.

Ainsi, pour démontrer qu’une suite complexe converge vers 0, inutile d’étudier les suites réelles des
parties réelles et imaginaires, il suffit de montrer que la suite réelle des modules converge vers 0.

Exemple 5.5 Étudier la convergence de la suite (un)n∈N définie par

∀n ∈ N, un =
(1+ i)n

2n

Ce qui reste valable Ce qui n’est plus valable

Unicité de la limite Majorant/minorant

Une suite convergente est bornée Monotonie

Opérations sur les limites Limites infinies

Suites extraites Passage à la limite des ≤

Majoration de ∣un− `∣ par un réel Théorème d’encadrement

Théorème de la limite monotone

Suites adjacentes
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