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Samedi 29 novembre, de 8h à 11h

Les règles à respecter sont les suivantes.
¬ Aucun document n’est autorisé. L’utilisation de toute calculatrice et de tout matériel électronique

est interdite.
­ Les candidat·e·s sont invité·e·s à encadrer dans la mesure du possible leurs résultats.
® Pour augmenter la lisibilité des calculs, dans la mesure du possible, les égalités successives seront

présentées en colonne (et non pas en ligne) avec les différents symboles = bien alignés.
¯ Les pages doivent être numérotées en indiquant le nombre de pages total (par exemple, 1/12, 2/12,

ect.)
° L’usage du blanco, souris, effaceurs et stylos frixion interdit : il faut rayer proprement (à la règle) en

cas d’erreur.

Exercice 1 – Questions de cours. Les questions de cet exercice sont indépendantes.
1. Résoudre le système suivant d’inconnue (x,y,z) ∈ R3 à l’aide du pivot de Gauss.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3x − 5y + 2z = 8
2x − 4y + z = 5
x − 2y + 3z = 5

On demande de faire apparaître sur la copie la vérification des résultats.

Soit (x,y,z) ∈ R3. On résout le système linéaire grâce à la méthode du pivot de Gauss.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3x − 5y + 2z = 8
2x − 4y + z = 5
x − 2y + 3z = 5

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − 2y + 3z = 5 (L1↔ L3)
2x − 4y + z = 5
3x − 5y + 2z = 8

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − 2y + 3z = 5
− 5z = −5 (L2← L2−2L1)

y − 7z = −7 (L3← L3−3L1)

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − 2y + 3z = 5
y − 7z = −7

− 5z = −5 (L3↔ L2)

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − 2y + 3z = 5
y − 7z = −7

z = 1 (L3↔ L2)

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − 2y + 3z = 5
y = 0

z = 1 (L3↔ L3−L2)

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = 2
y = 0

z = 1 (L3↔ L3−L2)

Ce système linéaire admet donc une unique solution, donnée par le triplet (2,0,1).

Ú Vérification. Le triplet (2,0,1) est bien une solution du système car

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3×2 − 5×0 + 2×1 = 8 ✓
2×2 − 4×0 + 1 = 5 ✓

2 − 2×0 + 3× (1) = 5 ✓



2. Déterminer les valeurs suivantes en justifiant précisément.

arccos( 1
2)

On a,

arccos(1
2) =

π

3

car
cos(π

3 ) = 1
2 et

π

3 ∈ [0,π]

a)

arcsin(0)
On a,

arcsin(0) = 0

car
sin(0) = 0 et 0 ∈ [−π

2 ,
π

2 ]

b)

arctan( 1√
3
)
On a,

arctan( 1√
3
) = π

6

car

tan(π

6
) =

sin(π

6 )
cos(π

6 )
=

1
2√
3

2

=
1√
3

et
π

6
∈]− π

2 ,
π

2 [

c)

3. Recopier et compléter le texte suivant donnant la définition de la notion de primitive.

« Soit f ∶ I→K une fonction. On dit que F ∶ I→K est une primitive de f sur I si

À la fonction F est dérivable sur I

Á et pour tout x ∈ I, F ′(x) = f (x).

4. Dans cette question, on cherche à déterminer une primitive de la fonction

f ∶ x↦
1

x2+ x−2

(a) Trouver les racines éventuelles du polynôme x↦ x2+ x−2 et en déduire sa factorisation.

Le polynôme x↦ x2+ x−2 est un polynôme du second degré. On peut chercher ses
racines à l’aide du discriminant qui vaut ici

∆ = 12
−4×1× (−2) = 9

Comme ∆ > 0, ce polynôme admet deux racines réelles qui valent :

x1 =
−1+

√
9

2 = 1 et x2 =
−1−

√
9

2 = −2

Ainsi, ce polynôme peut se factoriser de la manière suivante :

∀x ∈ R, x2
+ x−2 = (x−1)(x+2)



(b) Déterminer deux réels a et b tels que

∀x ∈ R\{1,−2}, f (x) = a
x−1 +

b
x+2

On cherche a et b tels que

∀x ∈ R\{1,−2}, 1
(x−1)(x+2) =

a
x−1 +

b
x+2

• Trouvons la valeur de a. En multipliant l’égalité par la fonction x↦ x− 1, on
obtient,

∀x ∈ R\{−2}, 1
x+2 = a+

b(x−1)
x+2

Puis, en évaluant l’égalité précédente en x = 1, on trouve a = 1
3 .

• De même, on trouve b = − 1
3 .

Ainsi,

∀x ∈ R\{1,−2}, f (x) = 1
3 ×

1
x−1 −

1
3 ×

1
x+2

(c) En déduire une primitive de f sur ]−2,1[.
D’après la question précédente,

∀x ∈ R\{1,−2}, f (x) = 1
3 ×

1
x−1 −

1
3 ×

1
x+2

On en déduit que une primitive F de f sur ]1,+∞[ est donnée par

∀x ∈]−2,1[, F(x) = 1
3 ln(∣x−1∣)− 1

3 ln(∣x+2∣)

c’est-à-dire

∀x ∈]−2,1[, F(x) = 1
3 ln(−x+1)− 1

3 ln(x+2)

car, pour tout x ∈]−2,1[, x−1 ≤ 0 et x+2 ≥ 0/
(d) En déduire l’ensemble des primitives de f sur ]−2,1[.

D’après la question précédente, on connaît une primitive de f sur ]− 2,1[. On en
déduit que l’ensemble des primitives de f sur ]−2,1[ est donné par

{ ]−2,1[ → R
x ↦ 1

3 ln(−x+1)− 1
3 ln(x+2)+ c ∣ c ∈ R}

(e) En déduire la primitive de f sur ]−2,1[ qui s’annule en 0.
La primitive de f sur ]−2,1[ qui s’annule en 2 est la fonction F donnée par

∀x ∈]−2,1[, F(x) = 1
3 ln(−x+1)− 1

3 ln(x+2)+ 1
3 ln(2)

car
• d’après la question précédente, F est bien une primitive de f sur ]−2,1[,
• et on peut vérifier que F(0) = 0.

5. Donner la définition d’une matrice inversible.

Soit A∈Mn(K) une matrice carrée. La matrice A est dite inversible lorsqu’ il existe B ∈Mn(K)
telle que AB = In ou BA = In. Dans ce cas,

• la matrice B est unique,
• on a en fait AB = In et BA = In,
• B s’appelle la matrice inverse de A, on la note A−1.



Exercice 2 – Sujet de concours : EDHEC 2020 (filière ECE). On convient que, pour tout réel x, on a x0
= 1.

On convient que, pour tout réel x, on a x0
= 1.

1. Pour tout n de N, justifier l’existence des intégrales:

In = ∫
1

0

xn

(1+ x)2 dx et Jn = ∫
1

0

xn

1+ xdx

Pour tout n ∈ N, les fonctions

x↦
xn

(1+ x)2 et x↦
xn

1+ x

sont continues sur [0,1] comme quotients de fonctions continues dont le dénominateur ne s’annule
pas (car, pour tout x ∈ [0,1], (1+ x)2

≠ 0 et 1+ x ≠ 0). Ce qui justifie l’existence de In et de Jn

quel que soit n ∈ N.

2. (a) Calculer I0.
On a

I0 = ∫
1

0

1
(1+ x)2 dx

= [ −1
1+ x]

1

0

=
−1
2 +1

=
1
2

(b) Calculer I1 à l’aide du changement de variable «t = 1+ x».

• La fonction t ↦ t−1
t2 est continue sur [1,2].

• La fonction x↦ 1+ x est de classe C1 sur [0,1].
Donc, en effectuant le changement de variables «t = 1+ x», on obtient,

I1 = ∫
1

0

x

(1+ x)2 dx

= ∫
2

1

t−1
t2 dt

= ∫
2

1
(1

t −
1
t2 )dt

= [ln(t)+ 1
t ]

2

1

= ln(2)− 1
2

3. (a) Montrer que, pour tout n ∈ N,

∀x ∈ [0,1], xn+2

(1+ x)2 +
2xn+1

(1+ x)2 +
xn

(1+ x)2 = xn

Soit n ∈ N. On a,

∀x ∈ [0,1], xn+2

(1+x)2 +
2xn+1

(1+x)2 +
xn

(1+x)2 =
xn+2+2xn+1+ xn

(1+ x)2

=
xn(x2+2x+1)

(1+ x)2

=
xn(1+ x)2

(1+ x)2

= xn



(b) En déduire que,

∀n ∈ N, In+2+2In+1+ In =
1

n+1
Soit n ∈ N. Par linéarité de l’intégrale et utilisant la relation de la question 3a , on obtient,

In+2+2In+1+ In = ∫
1

0
( xn+2

(1+ x)2 +
2xn+1

(1+ x)2 +
xn

(1+ x)2 )dx

= ∫
1

0
xndx

= [ xn+1

n+1]
1

0

=
1

n+1

(c) En déduire la valeur I2.
En utilisant la relation de la question 3b, on obtient,

I2+2I1+ I0 =
1

0+1

autrement dit,
I2 = 1−2I1− I0

En utilisant les calculs de I0 et I1 effectués aux questions 2a et 2b, on obtient,

I2 = 1−2(ln(2)− 1
2)− 1

2 =
3
2 −2ln(2)

4. (a) Montrer que,

∀x ∈ [0,1], 1
4 ≤

1
(1+ x)2 ≤ 1

Soit x ∈ [0,1]. On a,

0 ⩽ x ⩽ 1
donc 1 ⩽ 1+ x ⩽ 2

donc 1 ⩽ (1+ x)2
⩽ 4 car x↦ x2 croissante sur [0,+∞[

donc
1
4 ⩽

1
(1+ x)2 ⩽ 1

(b) En déduire que

∀n ∈ N, 0 ⩽ In ≤
1

n+1
Soit n ∈ N. Soit x ∈ [0,1]. D’après la question précédente, on a,

0 ⩽
1

(1+ x)2 ⩽ 1

donc 0 ⩽
xn

(1+ x)2 ⩽ xn car xn
⩾ 0

Finalement, on a montré que

∀x ∈ [0,1], 0 ⩽
xn

(1+ x)2 ⩽ xn

Donc, par croissance de l’intégrale,

∫
1

0
0dx ⩽ ∫

1

0

xn

(1+ x)2 dx ⩽ ∫
1

0
xndx



c’est-à-dire, après calcul des deux intégrales aux extrémités (l’intégrale de droite ayant
déjà été calculée à la question 3b par exemple),

0 ⩽ In ⩽
1

n+1

5. Établir, à l’aide d’une intégration par parties, que :

∀n ∈ N∗, In = n× Jn−1−
1
2

Soit n ∈ N∗. On a,

In = ∫
1

0

xn

(1+ x)2 dx

Posons, pour tout x ∈ [0,1],

u(x) = xn u′(x) = nxn−1

v′(x) =
1

(1+x)2 v(x) = − 1
1+x

Les fonctions u et v sont de classe C1 sur le segment [0,1]. Donc par intégrations par parties, on a

In = [ −xn

1+ x]
1

0
+∫

1

0

nxn−1

1+ x dx

=
−1
2 +n∫

1

0

xn−1

1+ x dx

= −
1
2 +nJn−1

6. (a) Calculer J0.
On a,

J0 = ∫
1

0

1
1+ x dx

= [ ln(∣1+ x∣)]
1

0

= ln(2)

(b) Montrer que,

∀n ∈ N, Jn+ Jn+1 =
1

n+1
Soit n ∈ N.

Jn+ Jn+1 = ∫
1

0

xn

1+ x dx+∫
1

0

xn+1

1+ x dx

= ∫
1

0

xn+ xn+1

1+ x dx

= ∫
1

0

xn(1+ x)
1+ x dx

= ∫
1

0
xndx

=
1

n+1

(c) En déduire la valeur de J1.



Grâce à la relation de la question 6b, on obtient que,

J0+ J1 =
1

0+1

autrement dit,
J1 = 1− J0

Donc, en utilisant le calcul de l’intégrale J0 fait à la question , on obtient

J1 = 1− ln(2)

7. Montrer par récurrence que :

∀n ∈ N∗, Jn = (−1)n (ln(2)−
n

∑
k=1

(−1)k−1

k
)

Démontrons par récurrence que, pour tout n ∈ N∗,

Pn: «Jn = (−1)n (ln(2)−
n

∑
k=1

(−1)k−1

k
)»

est vraie.
• Initialisation. Montrons que P1 est vraie. D’une part, d’après la question 6c,

J1 = 1− ln(2)

D’autre part,

(−1)1 (ln(2)−
1

∑
k=1

(−1)k−1

k
) = −(ln(2)−1) = 1− ln(2)

Donc P1 est vraie.
• Hérédité. On suppose que Pn est vraie pour un certain n ∈ N∗ c’est-à-dire que

Jn = (−1)n (ln(2)−
n

∑
k=1

(−1)k−1

k
)

Montrons que Pn+1 est vraie, c’est-à-dire, montrons que

Jn+1 = (−1)n+1 (ln(2)−
n+1

∑
k=1

(−1)k−1

k
)

On a,

Jn+1 = −Jn+
1

n+1 d’après la question 7b

= −(−1)n (ln(2)−
n

∑
k=1

(−1)k−1

k
)+ 1

n+1 par hypothèse de récurrence

= (−1)n+1 (ln(2)−
n

∑
k=1

(−1)k−1

k
)+ 1

n+1

= (−1)n+1 (ln(2)−
n

∑
k=1

(−1)k−1

k
−

(−1)n

n+1 )

= (−1)n+1 (ln(2)−
n+1

∑
k=1

(−1)k−1

k
)

Donc Pn+1 est vraie.
• Conclusion. Par principe de récurrence, on a démontré que

∀n ∈ N∗, Jn = (−1)n (ln(2)−
n
∑
k=1

(−1)k−1

k )



Exercice 3 – Sujet de concours : ECRICOME 2024 (filière ECE). Soit n un entier naturel supérieur ou égal
à 2. On considère la matrice carrée de taille n×n dont tous les coefficients diagonaux sont égaux à 0, et dont
tous les autres coefficients sont égaux à 1 :

Mn =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 ⋯ 1
1 0 ⋱ ⋮
⋮ ⋱ ⋱ 1
1 ⋯ 1 0

⎞
⎟⎟⎟⎟⎟
⎠

On note In la matrice identité d’ordre n.

Partie 1 - Étude du cas n = 3
Dans cette question, on considère la matrice

M =

⎛
⎜⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟
⎠

1. Montrer que (M+ I3)2
= 3(M+ I3).

Tout d’abord, on peut calculer que :

M+ I3 =
⎛
⎜⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟
⎠

Puis, en effectuant le produit matriciel, on obtient,

(M+ I3)2
=

⎛
⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

3 3 3
3 3 3
3 3 3

⎞
⎟⎟
⎠
= 3

⎛
⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟
⎠
= 3(M+ I3)

Finalement, on a montré que

(M+ I3)2
= 3(M+ I3)

2. Développer les expressions littérales (M+ I3)2 et 3(M+ I3).
En développant l’expression, on obtient directement que

(M+ I3)2
= (M+ I3)(M+ I3)
=M ⋅M+M ⋅ I3+ I3 ⋅M+ I3 ⋅ I3

=M2+2M+ I3

De même, on obtient directement que,

3(M+ I3) = 3M+3I3

3. En déduire que
M2
−M−2I3 = O3.

D’après la question 1, on a,
(M+ I3)2

= 3(M+ I3),
c’est-à-dire, en utilisant la question 2,

M2
+2M+ I3 = 3M+3I3

c’est-à-dire

M2−M−2I3 = 03



4. En déduire que la matrice M est inversible et déterminer son inverse.
En partant de la relation obtenue à la question 3, on a

M2
−M−2I3 = 03 donc M2

−M = 2I3

donc M(M− I3) = 2I3

donc M×[1
2 (M− I3)] = I3

Ainsi,

il existe une matrice B =
1
2 (M− I3) ∈M3(R) telle que MB = I3.

Donc, la matrice M est inversible et son inverse est donné par

M−1
=

1
2 (M− I3)

En faisant le calcul, on obtient que,

M−1
=

1
2

⎛
⎜⎜
⎝

−1 1 1
1 −1 1
1 1 −1

⎞
⎟⎟
⎠

Ú Vérification (à faire au brouillon, pas sur la copie).

M ⋅M−1
=M =

⎛
⎜⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟
⎠
×

1
2

⎛
⎜⎜
⎝

−1 1 1
1 −1 1
1 1 −1

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠
= I3 ✓

Dans les questions qui suivent, on considère les matrices P et Q données par

P =
⎛
⎜⎜
⎝

1 1 1
−1 0 1
0 −1 1

⎞
⎟⎟
⎠

et Q =
1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠

5. Montrer que la matrice P est inversible et que P−1
= Q.

En effectuant le produit matriciel, on peut remarquer que

P×Q =

⎛
⎜⎜
⎝

1 1 1
−1 0 1
0 −1 1

⎞
⎟⎟
⎠
×

1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠
=

1
3

⎛
⎜⎜
⎝

3 0 0
0 3 0
0 0 3

⎞
⎟⎟
⎠
= I3

Donc, la matrice P est inversible et son inverse vaut P−1
= Q.

6. On pose D = P−1MP. Calculer la matrice D et montrer que D est une matrice diagonale.
En effectuant le calcul matriciel, on obtient,

D = P−1MP

=
1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠
×
⎛
⎜⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟
⎠
×
⎛
⎜⎜
⎝

1 1 1
−1 0 1
0 −1 1

⎞
⎟⎟
⎠

=
1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠
×
⎛
⎜⎜
⎝

−1 −1 2
1 0 2
0 1 2

⎞
⎟⎟
⎠

=

⎛
⎜⎜
⎝

−1 0 0
0 −1 0
0 0 2

⎞
⎟⎟
⎠

7. Justifier précisément que M = PDP−1.



Par définition de la matrice D, on a
D = P−1MP

En multipliant à gauche des deux côtés de cette égalité par la matrice P, on obtient

PD = PP−1MP

Or, par définition de l’inverse PP−1
= I3. Donc, on obtient,

PD = I3MP

c’est-à-dire
PD =MP.

De même, en multipliant à droite des deux côtés de cette égalité par la matrice P−1, on obtient

PDP−1
=M

8. Montrer par récurrence que,
∀k ∈ N, Mk

= PDkP−1

Raisonnons par récurrence. Notons, pour tout k ∈ N, P(k) : " Mk
= PDkP−1 "

• Initialisation. Montrons que P(0) est vraie.
D’une part, M0

= I3 (par convention).
D’autre part, PD0P−1

= PI3P−1
= PP−1

= I3.
Donc P(0) est vraie.

• Hérédité.
Supposons que la propriété P(k) soit vraie pour un certain k ∈ N, c’est-à-dire supposons
que

Mk
= PDkP−1

Montrons que la propriété P(k+1) est vraie, c’est-à-dire montrons que

Mk+1
= PDk+1P−1

On a

Mk+1
=Mk

×M

= PDkP−1M par hyp de récurrence

= PDkP−1PDP−1 cf question 7

= PDkDP−1

= PDk+1P−1

Donc P(k+1) est vraie.
• Conclusion. Donc, par principe de récurrence, on a montré que

∀k ∈ N, Mk
= PDkP−1

9. Déterminer, pour tout k ∈ N, l’expression de Dk.
La matrice D étant diagonale (cf question 6), on peut montrer par une récurrence immédiate que

∀k ∈ N, Dk
=

⎛
⎜⎜⎜⎜
⎝

(−1)k 0 0
0 (−1)k 0
0 0 2k

⎞
⎟⎟⎟⎟
⎠

10. En déduire, pour tout k ∈ N, l’expression de Mk.



Soit k ∈ N. En utilisant les questions 8 et 9 et en effectuant le produit matriciel, on obtient que

Mk
= PDkP−1

=

⎛
⎜⎜
⎝

1 1 1
−1 0 1
0 −1 1

⎞
⎟⎟
⎠
×
⎛
⎜⎜⎜⎜
⎝

(−1)k 0 0
0 (−1)k 0
0 0 2k

⎞
⎟⎟⎟⎟
⎠
×

1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

(−1)k (−1)k 2k

(−1)k+1 0 2k

0 (−1)k+1 2k

⎞
⎟⎟⎟⎟
⎠
×

1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠

=
1
3

⎛
⎜⎜⎜⎜
⎝

2(−1)k+2k (−1)k+1+2k (−1)k+1+2k

(−1)k+1+2k −2(−1)k+1+2k (−1)k+1+2k

(−1)k+1+2k (−1)k+1+2k −2(−1)k+1+2k

⎞
⎟⎟⎟⎟
⎠

Ú Vérification (à faire au brouillon, pas sur la copie). Pour k = 0, on obtient,

M0
=

1
3

⎛
⎜⎜
⎝

3 0 0
0 3 0
0 0 3

⎞
⎟⎟
⎠
= I3 ✓

On peut aussi vérifier que pour k = 1, on retombe bien sur l’expression de la matrice M.

11. On admet qu’il existe, pour tout k ∈ N, deux réels ak et bk tels que

Mk
= akM+bkI3.

Déterminer, pour tout k ∈ N, l’expression de ak et bk.
Soit k ∈ N. D’une part, en utilisant la question 10, on a

Mk
=

1
3

⎛
⎜⎜⎜⎜
⎝

2(−1)k+2k (−1)k+1+2k (−1)k+1+2k

(−1)k+1+2k −2(−1)k+1+2k (−1)k+1+2k

(−1)k+1+2k (−1)k+1+2k −2(−1)k+1+2k

⎞
⎟⎟⎟⎟
⎠

D’autre part, en effectuant le calcul, on obtient

akM+bkI3 =
⎛
⎜⎜
⎝

bk ak ak
ak bk ak
ak ak bk

⎞
⎟⎟
⎠

En identifiant les coefficients des deux matrices, l’égalité Mk
= akM+bkI3 implique que les coeffi-

cients ak et bk valent

ak =
1
3 ((−1)k+1+2k) et bk =

1
3 (2(−1)k+2k)

Partie 2 - Cas général : n est un entier naturel quelconque supérieur ou égal à 2
Soit n ≥ 2 fixé dans toute cette partie. On considère la matrice Jn ∈Mn(R) dont tous les coefficients sont
égaux à 1 :

Jn =

⎛
⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
1 1 ⋱ ⋮
⋮ ⋱ ⋱ 1
1 ⋯ 1 1

⎞
⎟⎟⎟⎟⎟
⎠

12. Calculer J2
n et exprimer la matrice obtenue en fonction de Jn.

En effectuant le produit matriciel, on obtient,

J2
n =

⎛
⎜⎜⎜⎜⎜
⎝

n n ⋯ n
n n ⋱ ⋮
⋮ ⋱ ⋱ n
n ⋯ n n

⎞
⎟⎟⎟⎟⎟
⎠
= nJn



13. Montrer que, pour tout entier naturel k non nul, (Jn)k
= nk−1Jn.

Raisonnons par récurrence. Notons, pour tout k ∈ N∗, P(k) : " (Jn)k
= nk−1Jn "

• Initialisation. Montrons que P(1) est vraie.
D’une part, (Jn)1

= Jn.
D’autre part, n1−1Jn = n0Jn = 1× Jn = Jn.

Donc P(1) est vraie.
• Hérédité.

Supposons que la propriété P(k) soit vraie pour un certain k ∈ N, c’est-à-dire
supposons que

(Jn)k
= nk−1Jn

Montrons que la propriété P(k+1) est vraie, c’est-à-dire montrons que

(Jn)k+1
= nkJn

On a

(Jn)k+1
= (Jn)k

× Jn

= nk−1Jn× Jn par hyp de récurrence

= nk−1(Jn)2

= nk−1
×nJn cf question précédente

= nkJn

Donc P(k+1) est vraie.
• Conclusion. Donc, par principe de récurrence, on a montré que

∀k ∈ N∗, (Jn)k
= nk−1Jn

14. Exprimer Mn en fonction de In et Jn.

On peut remarquer que Mn = Jn− In.

15. En déduire que, pour tout entier naturel k non nul,

(Mn)k
= ckJn+ (−1)kIn

où

ck =

k

∑
i=1

(k
i)ni−1(−1)k−i

Soit k ∈ N∗. D’après la question précédente,

(Mn)k
= (Jn− In)k

Or les deux matrices Jn et −In commutent (on a Jn (−In) = (−In)Jn) donc par la formule



du binôme de Newton, on a,

Mk
n = (Jn− In)k

=

k

∑
i=0

(k
i)Ji

n (−In)k−i

=

k

∑
i=0

(k
i)Ji

n× (−1)k−iIn car pour tout i ∈ N, (−In)k−i
= (−1)k−iIn

=

k

∑
i=0

(k
i)(−1)k−iJi

n

= (−1)kIn+
k

∑
i=1

(k
i)(−1)k−iJi

n

= (−1)kIn+
k

∑
i=1

(k
i)(−1)k−ini−1Jn en utilisant la question 13

= (−1)kIn+(
k

∑
i=1

(k
i)(−1)k−ini−1)Jn

= (−1)kIn+ ckJn

avec

ck =

k

∑
i=1

(k
i)(−1)k−ini−1

16. Montrer que, pour tout entier naturel k non nul,

ck =
(n−1)k+ (−1)k+1

n

où ck est le réel défini à la question précédente.

Soit k ∈ N∗. En utilisant la formule du binôme de Newton, on a,

ck =

k

∑
i=1

(k
i)ni−1(−1)k−i

=
1
n

k

∑
i=1

(k
i)ni(−1)k−i

=
1
n (

k

∑
i=0

(k
i)ni(−1)k−i

− (−1)k)

=
(n−1)k+ (−1)k+1

n

17. En déduire, pour tout entier naturel k non nul, une expression des coefficients diagonaux et des
coefficients non diagonaux de (Mn)k en fonction de n et de k.

Soit k ∈ N∗. D’après la question 15, on a,

Mn = ckJn+ (−1)kIn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

(−1)k ck ⋯ ck

ck (−1)k ⋱ ⋮
⋮ ⋱ ⋱ ck

ck ⋯ ck (−1)k

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠



• Ainsi, tous les coefficients diagonaux de (Mn)k valent (−1)k

• et tous les coefficients non diagonaux de (Mn)k valent

ck =
(n−1)k+ (−1)k+1

n


