Informatique — ECG1 TP 05

TP 05 — RECHERCHE SEQUENTIELLE

Entrée [1]:

Out [17:

Entrée [2]:

Out [2]:

Entrée [3]:

Out [3]:

Entrée [4]:

Out [4]:

Informatique — ECG1 TP 05

Le but du TP est de programmer un algorithme de recherche d’un élément dans une liste (et ses
variantes : recherche du minimum, du maximum, du second maximum). On va souvent faire des
recherches par balayage, c’est-a-dire des recherches ot 'on passe en revue tous les termes de notre
liste afin de déterminer 'information souhaitée. On utilisera pour cela pour une boucle for.

n Recherche dans une liste par balayage

Le but du TP est de programmer un algorithme de recherche d’un élément dans une liste (et ses
variantes : recherche du minimum, du maximum, du second maximum). On va souvent faire des
recherches par balayage, c’est-a-dire des recherches ol 'on passe en revue tous les termes de notre
liste afin de déterminer I'information souhaitée. On utilisera pour cela pour une boucle for.

#Balayage des éléments de maniere directe
L = [1,4.2, '"Info']
for e in L:

print(e)

1,4.2, '"Info'

#Balayage des éléments via la position
L = [1,4.2, 'Info']
for k in range(len(L)):

print(L[k])

1,4.2, 'Info'

#Balayage des éléments via la position
L =1[1,4.2, '"Info'l]
for k in range(len(L)):

print (k)

print (LLk])

0,1,1, 4.2, 2, 'Info'

.1 Recherche d’un élément

Pour effectuer une recherche séquentielle (méthode naive) d’un élément x dans une liste L, on
procede de la maniére suivante.

¢ On parcourt tous les éléments de L un par un grace a une boucle, en introduisant une variable
e qui va prendre successivement toutes les valeurs de la liste.

— Si I’élément de I’étape en cours correspond a I’élément x, on renvoie True.
¢ Une fois tous les éléments testés, si aucun ne correspond a 1’élément x, on renvoie False.

A noter : Python sait déja effectuer cette tache, via la commande x in L, que on n’utilisera pas...

L=[4,8,15,16,23,42] #(Qui a la ref?)
print(8 in L)
print(2 in L)

True
False

Informatique — ECG1 TP 05

Décrire (sur papier) l'algorithme lorsque l’on cherche si ’élément x=10 appartient &
la liste L=[1,4,5,10, 3].

e Test e=x 7 Arrét du programme ? Oui/Non
1 Non On continue...

4 Non On continue...

5 Non On continue...

10 Oui Arrét et affiche True

3 X X

Décrire (sur papier) lalgorithme lorsque 'on cherche si I’élément x=7 appartient a

la liste L=[4, 8, 15, 16, 23, 42].

e Test e=x? Arrét du programme 7 Si oui, affichage.
4 Non On continue...

8 Non On continue...

15 Non On continue...

16 Non On continue...

23 Non On continue...

42 Non Arrét et affiche False

1. Ecrire une fonction recherchenaive qui prend en argument une liste L et un élément x et
qui renvoie True si 'élément x est dans la liste et False sinon. Vérification : L’évaluation de
la fonction en ([1,4,5,10,3]1,10) doit renvoyer True et l’évaluation de la fonction en ([4,
8, 15, 16, 23, 421,7) doit renvoyer False.

Entrée [5]: def recherchenaive(L,x):
for e in L: #création d'une variable e qui parcourt la liste
if e==x: #si e correspond a x
return(True) #la fonction renvoie True
return(False) #si aucun match, la fonction renvoie False

Tester cette fonction.

Entrée [6]: recherchenaive([1,4,5,10,3],10)
Out [6]: True

Entrée [7]: recherchenaive ([4, 8, 15, 16, 23, 421,7)
Out [7]: False

2. Sila liste L est de taille n (c’est-a-dire contient n éléments), alors le nombre maximal de tests
d’égalité effectués est
n

Informatique — ECG1 TP 05

1. Ecrire une fonction nbocc qui prend en argument une liste L et un élément x et qui ren-
voie le nombre d’occurences de x dans la liste. Vérification : L’évaluation de la fonction en
([1,2,0,2,1,1,11,1) doit renvoyer 4.

Entrée [8]: def nbocc(L,x):
compteur = 0
for e in L:
if e==x:
compteur=compteur+1
return(compteur)

Tester cette fonction.

Entrée [9]: nbocc([1,2,0,2,1,1,11,1)

Out [9]: 4

1.2 Recherche de la place d’un élément dans une liste

Gréce a la recherche séquentielle, on peut aussi déterminer le plus petit indice (position) ou se
trouve I’élément x s’il est présent dans la liste. On procede de la maniére suivante.

e On parcourt tous les éléments de L un par un grace a une boucle, a ’aide d’une variable k
qui correspond a l'indice de I’élément dans la liste que ’on regarde.

— Si I’élément de I’étape en cours correspond a 1’élément x, on renvoie I'indice de 1’élément
en cours.

¢ Une fois tous les éléments testés, si aucun ne correspond a 1’élément x, on renvoie un message
d’erreur.

Décrire (sur papier) I’algorithme lorsque 1'on cherche le plus petit indice ot se trouve
I’élément x=10 dans la liste L=[1,4,5,10, 3].

k LLk] L[kI=x? Arrét du programme ? Si oui, affichage.
0 1 Non On continue...

1 4 Non On continue...

2 5 Non On continue...

3 10 Oui Arrét et affichage de 3

4 3 X X

Ecrire une fonction indice qui prend en argument une liste L et un élément x et
qui renvoie le plus petit indice ou se trouve 1’élément x s’il est présent dans la liste, et renvoie le
message “non trouvé” sinon. Vérification : L’évaluation de la fonction en ([1,4,5,10,3]1,10) doit
renvoyer 3, alors que ’évaluation en ([4, 8, 15, 16, 23, 421,7) doit renvoyer Non trouvé.

Entrée [10]: def indice(L,x):
for k in range(len(L)): #on parcourt 1les indices de la liste
if L[k]==x: #si 1'élément en position k vaut x
return(k) #on renvoie la position de 1'élément
return('Non trouvé !') #si aucun match, message d'erreur

Entrée [11]: indice([1,4,5,10,3]1,10)

Out

Entrée

Out

Entrée

Entrée

Out

Entrée

Entrée

Out

[111:

[12]:

[121:

[137:

[14]:

[14]:

[15]:

[16]:

[16]:

Informatique — ECG1 TP 05

indice ([4, 8, 15, 16, 23, 42]1,7)

Non trouvé !

Ecrire une fonction listeindice qui prend en argument une liste L et un élément

x et qui renvoie la liste de tous les indices de position de x dans la liste L (le programme renvoie
une liste vide si I’élément x ne se trouve pas dans L). Vérification : L’évaluation de la fonction
listeindice en ([4,5,4]1,4) doit renvoyer [0,2].
def listeindice(L,x):

P=[1]

for k in range(len(L)):

if L[k]==x:
P.append (k)
return(P)

listeindice([4,5,4],4)

e, 2]

Ecrire une fonction dernierindice qui prend en argument une liste L et un élément
x et qui renvoie le plus grand indice ou se trouve 1’élément x s’il est présent dans la liste, et

A

renvoie le message “non trouvé” sinon. Vérification : L’évaluation de la fonction dernierindice
en ([4,5,4],4) doit renvoyer 2.

def dernierindice(L,x):
P=1listeindice (L, x)
return(P[-11)

dernierindice ([4,5,4],4)

.3 Recherche d’un minimum/maximum d’une liste

Grace a la recherche séquentielle, on peut aussi déterminer le maximum d’une liste. On procede
de la manieére suivante.

e On initialise une variable maxi au premier élément de la liste.
e On parcourt tous les éléments de L un par un grace a une boucle.

— SiPélément de I’étape en cours est plus grand (strictement) que le maximum temporaire,
on actualise la valeur du maximum.

— Sinon, on ne fait rien.

Informatique — ECG1 TP 05

Décrire (sur papier) Palgorithme lorsque 1’on cherche le maximum de la liste L=[1,2,3,-1].

e maxi (temporaire) Affichage.

1 1

2 2

3 3

-1 3 Arrét et affichage de 3

Ecrire une fonction maximum qui prend en argument une liste L et qui renvoie le
maximum de cette liste. Vérification : L’évaluation de la fonction maximum en [-3,-5,-10,-1] doit
renvoyer —1.

Entrée [17]: def maximum(L):
maxi = L[0@]
for e in L:
if e>maxi:
maxi=e
return(maxi)

Tester cette fonction.

Entrée [18]: maximum([-3,-5,-10,-11])

Out [18]: -1

Ecrire une fonction minimum qui prend en argument une liste L et qui renvoie le
minimum de cette liste. Vérification : L’évaluation en [1,2,-1,3] doit renvoyer -1.

Entrée [19]: def minimum(L):
mini = L[0@]
for e in L:
if e<mini:
mini=e
return(mini)

Tester cette fonction.
Entrée [20]: minimum([1,2,-1,3])

Out [20]: -1

Ecrire une fonction indiceminimum qui en argument une liste L et qui renvoie la
(premiére) position du minimum de cette liste. Vérification : L’évaluation en [-3,-5,-10,-1] doit
renvoyer 3.

Entrée [21]: def indiceminimum(L):
mini = L[0]
imini = @
for k in range(len(L)):
if LLkI<mini:

mini=L[k]
imini=k
return (k)

Entrée [22]: indiceminimum([-3,-5,-10,-1])

Informatique — ECG1 TP 05

Out [22]: 3

Ecrire une fonction secmaximum qui prend en argument une liste L et qui renvoie
la valeur du deuxiéme maximum de la liste. Si la liste est de taille inférieure ou égale a 1, cette
fonction doit renvoyer None. Vérification : L’évaluation en [3,1,10,5,7] doit renvoyer 7 alors que
l’évaluation en [1] doit renvoyer None.

Entrée [23]: def secmaximum(L):
if len(L):
return('None')
maxi=maximum(L)
M=[x for x in L if x !=maxi]
return(maximum(M))

Tester cette fonction.

Entrée [24]: secmaximum([3,1,10,5,7])
Out [24]: 7
Entrée [25]: secmaximum([10,2,-1,3])

Out [25]: 'None'

“ Moyenne et variance

Ecrire une fonction somme qui prend en argument une liste L et qui calcule la somme
de tous les éléments. Vérification : L’évaluation en [1,2,3,4,5,6] doit renvoyer 21.

Entrée [26]: def somme(L):
c =0
for e in L:
c=c+e
return(c)

Entrée [27]: L = [1,2,3,4,5,6]

somme (L)
Out [27]: 21
Soit L = [x1,x2,...,%,] une liste de réels. On définit la moyenne de la liste par :

1 n
m = — E Tk.
n
k=1

La wvariance de L est alors :

Informatique — ECG1

TP 05

Ecrire une fonction moyenne qui prend en argument une liste d’entiers et qui renvoie
la moyenne des valeurs d’une liste. Vérification : L’évaluation en [@,20] doit renvoyer 10.

Entrée [28]: def moyenne(L):
s =0
for e in L:
s = s + e
s = s / len(L)
return s

Entrée [29]: moyenne ([0,20])

Out [29]: 10

Ecrire une fonction variance qui prend en argument une liste d’entiers et qui

renvoie la variance des valeurs d’une liste. Vérification : L’€évaluation en

100.

Entrée [30]: def variance(L):
m=moyenne (L)
s =0
for e in L:
s = s + (e-m)*x*2
s = s / len(L)
return s

Entrée [31]: variance ([0,201])

Out [31]: 100

[9,20] doit renvoyer

Comptage dans une liste a I’'aide d’un dictionnaire

1. Ecrire une fonction dico prenant en argument une liste L et renvoyant un dictionnaire dont
les clefs sont les éléments distincts de L et les valeurs associés sont le nombre d’occurrences
de cet élément dans L. Pour ajouter une nouvelle valeur au dictionnaire, on pourra utiliser la
commande nom_dicto[nvclefl=nvvaleur. Vérification : L’évaluation en [5, 13, 2, 9, 5,

1, 131 doit renvoyer {5:2 , 13:2 , 2:1 , 9:1 , 1:1}

Entrée [32]: def dico(L):
d={}
for e in L:
nvclef=e
nvvaleur=nbocc(L,e)
dlnvclef]l=nvvaleur
return(d)

Entrée [33]: dico([5, 13, 2, 9, 5, 1, 131)

Out [33]: {5: 2, 13: 2, 2: 1, 9: 1, 1: 1}

Informatique — ECG1 TP 05

2. Ecrire une fonction identiques prenant en argument deux listes L1 et L2, et renvoyant True si
ces deux listes ont les mémes éléments avec pour chacun le méme nombre d’occurrences (pas
forcément & la méme place), et False sinon. Vérification : L’évaluation en ([1,21,[2,11)
doit renvoyer True.

Entrée [34]: def identiques(L1,L2):
return(dico(L1)==dico(L2))

Entrée [35]: identiques ([1,2]1,[2,1])

Out [35]: True

Recherche d’un mot dans une chaine de caracteres

1. Ecrire puis tester une fonction is_mot_position prenant en arguments un mot m, un indice
de position i et une chaine de caractéres s et renvoyant True si le mot m apparait dans s a
partir de la i-iéme position (c’est-a-dire si la mot apparait et que sa premiére lettre tombe
exactement en position i), False sinon.

Par exemple :

e is_mot_position (¢‘petit’’,12,‘‘il était un petit homme’’) doit renvoyer True,
e is_mot_position (‘‘petit’’,13,‘¢il était un petit homme’’) doit renvoyer False

e is_mot_position (‘‘petit’’,12,‘“il était un peti’’) doit renvoyer False

Entrée [36]: def is_mot_position(m,i,s):
if i+len(m)>len(s):
return(False)
for j in range(len(m)):
if s[i+j] !'= m[j]:
return(False)
return(True)

2. Ecrire puis tester une fonction is_mot prenant en arguments un mot m et une chaine de
caractéres s et renvoyant True si le mot m apparait dans s False sinon.

Entrée [37]: def is_mot(m,s):
for i in range(len(s)-len(m)+1):
if is_mot_position(m,i,s):
return(True)
return(False)

3. Ecrire puis tester une fonction recherche_mot prenant en arguments un mot m et une chaine
de caracteres s et renvoyant l'indice de la premiere occurrence du mot m dans la chaine s si
ce mot y figure, et None sinon.

Entrée [38]: def is_mot(m,s):
for i in range(len(s)-len(m)+1):
if is_mot_position(m,i,s):
return(i)
return(None)

Informatique — ECG1 TP 05

4. Ecrire puis tester une fonction occurrences_mot prenant en arguments un mot m et une
chaine de caracteres s et renvoyant le nombre d’occurrences du mot m dans la chaine s.

Entrée [39]: def occurrences_mot(m,s):
compteur = 0
for i in range(len(s)-len(m)+1):
if is_mot_position(m,i,s):
compteur=compteur+1
return(compteur)

Exercices en vrac

Ecrire une fonction selectionner, qui prend en argument une liste L et deux entiers
a et b (avec a < b) et qui renvoie la liste (éventuellement vide) des éléments de L qui sont compris
(au sens large) entre a et b.

Entrée [40]: def selectionner(L,a,b):
M=[]
for e in L:
if a<=e and e<=b:
M. append(e)
return(M)

Ecrire une fonction contientpositif, qui prend en argument une liste Let qui
renvoie True si la liste contient un nombre strictement positif et False sinon.

Entrée [41]: def contientpositif(L):
for e in L:
if e>0:
return(True)
return(False)

Ecrire une fonction supprimer, qui prend en argument une liste L et un entier x et
qui renvoie une liste constituée des mémes éléments que L sauf les entiers x.

Entrée [42]: def surpprimer(L,x):
S=[1]
for e in L:
if not(e==x):
S.append(e)
return(S)

Ecrire une fonction npplusmoins, qui prend en argument une liste L et renvoie le
couple (p,m) ou p est égal a la somme des éléments positifs ou nuls de L et m est égal a la somme
des éléments strictement négatifs de L.

Entrée [43]: def nbplusmoins(L):
m=0
p=0
for e in L:
if e>=0:
p=pte
else:
m=m+e
return(p,m)

10

Informatique — ECG1 TP 05

Ecrire une fonction valproche qui prend en argument une liste L et un élément x
(qui est dans la liste) et qui renvoie I’élément le plus proche de x, c’est-a-dire I’élément dont I’écart
a x est le plus petit. L’écart entre deux valeurs x et y peut étre quantifiée par |z — y|.

Entrée [44]: import numpy as np
def valproche(L,x):
y = L[]
ecart = np.abs(x-y)
for e in L:

if e 1= x
if np.abs(e-x)< ecart
y = e

ecart = np.abs(x-y)
return(y)

Tester cette fonction.

Entrée [45]: valproche([1,3,7,13]1, 14)
Out [45]: 13
Entrée [46]: valproche([1,3,7,13], 0)

Out [46]: 1

Ecrire une fonction deuxvalproches qui prend en argument une liste L et qui
renvoie les deux éléments les plus proches (c¢’est-a-dire les deux éléments dont I'écart est le plus
petit parmi tous les couples d’éléments de la la liste).

Entrée [47]: def deuxvalproches(L):
ecart = np.abs(L[@] - L[11)

x=L[0]
y=L[1]
for e in L:
for f in L:
if e 1= f
if np.abs(e-f) < ecart
X = e
y = f

ecart = np.abs(e-f)
return(x,y)

Entrée [48]: #version optimisée
import numpy as np
def deuxvalprochesopt(L):
ecart = np.abs(L[@] - L[11)
x=L[0]
y=L[11]
for i in range(len(L)):
for j in range(i+1, len(L)):
if np.abs(L[i] - L[j]) < ecart
ecart=np.abs(L[i] - L[j1)
x=L[i]
y=L[3]
return(x,y)

Tester cette fonction.

Entrée [49]: deuxvalproches ([1,6,10,9,42]1)

11

Informatique — ECG1 TP 05

Out [49]1: (10,9)
Entrée [50]: deuxvalproches ([1,3,7,13])

Out [50]: (1,3)

Ecrire une fonction croissante qui prend en argument une liste d’entiers et qui
renvoie True si la liste est rangée dans l'ordre croissant et False sinon.

Entrée [51]: def croissante(L):
for k in range(len(L)-1):
if not(LLkI<=L[k+1]1):
return(False)
return(True)

Ecrire une fonction tri qui prend en argument une liste L et qui renvoie cette
méme liste mais rangée dans 'ordre croissant. On pourra utiliser 'algorithme de tri par sélection
qui se déroule de la maniere suivante :

¢ On cherche le plus petit élément de la liste et on ’échange avec I’élément en position 0.

¢ On cherche le second plus petit élément de la liste et on I’échange avec I’élément en position
1.

¢ On continue ainsi jusqu’a ce que le tableau soit entierement trié.

Entrée [52]: def tri(L):

n = len(L)
for i in range(n-1):
imini = 1

for j in range (i+1, n):
if L[j] < LCimini]:
imini = j
LLil, LLiminil= L [imini] , L[il
return(L)

12

	Recherche dans une liste par balayage
	Recherche d'un élément
	Recherche de la place d'un élément dans une liste
	Recherche d'un minimum/maximum d'une liste

	Moyenne et variance
	Comptage dans une liste à l'aide d'un dictionnaire
	Recherche d'un mot dans une chaîne de caractères
	Exercices en vrac

