
Informatique – ECG1 TP 05

TP 05 – RECHERCHE SÉQUENTIELLE

1

Informatique – ECG1 TP 05

Le but du TP est de programmer un algorithme de recherche d’un élément dans une liste (et ses
variantes : recherche du minimum, du maximum, du second maximum). On va souvent faire des
recherches par balayage, c’est-à-dire des recherches où l’on passe en revue tous les termes de notre
liste afin de déterminer l’information souhaitée. On utilisera pour cela pour une boucle for.

I Recherche dans une liste par balayage

Le but du TP est de programmer un algorithme de recherche d’un élément dans une liste (et ses
variantes : recherche du minimum, du maximum, du second maximum). On va souvent faire des
recherches par balayage, c’est-à-dire des recherches où l’on passe en revue tous les termes de notre
liste afin de déterminer l’information souhaitée. On utilisera pour cela pour une boucle for.

Entrée [1]: #Balayage des éléments de manière directe
L = [1,4.2, 'Info']
for e in L:

print(e)

Out [1]: 1,4.2, 'Info'

Entrée [2]: #Balayage des éléments via la position
L = [1,4.2, 'Info']
for k in range(len(L)):

print(L[k])

Out [2]: 1,4.2, 'Info'

Entrée [3]: #Balayage des éléments via la position
L = [1,4.2, 'Info']
for k in range(len(L)):

print(k)
print(L[k])

Out [3]: 0,1,1, 4.2, 2, 'Info'

I.1 Recherche d’un élément
Pour effectuer une recherche séquentielle (méthode naïve) d’un élément x dans une liste L, on
procède de la manière suivante.

• On parcourt tous les éléments de L un par un grâce à une boucle, en introduisant une variable
e qui va prendre successivement toutes les valeurs de la liste.

– Si l’élément de l’étape en cours correspond à l’élément x, on renvoie True.

• Une fois tous les éléments testés, si aucun ne correspond à l’élément x, on renvoie False.

À noter : Python sait déjà effectuer cette tâche, via la commande x in L, que l’on n’utilisera pas...

Entrée [4]: L=[4,8,15,16,23,42] #(Qui a la ref?)
print(8 in L)
print(2 in L)

Out [4]: True
False

2

Informatique – ECG1 TP 05

Exercice 1 Décrire (sur papier) l’algorithme lorsque l’on cherche si l’élément x=10 appartient à
la liste L=[1,4,5,10,3].

e Test e=x ? Arrêt du programme ? Oui/Non

1 Non On continue...

4 Non On continue...

5 Non On continue...

10 Oui Arrêt et affiche True

3 x x

Exercice 2 Décrire (sur papier) l’algorithme lorsque l’on cherche si l’élément x=7 appartient à
la liste L=[4, 8, 15, 16, 23, 42].

e Test e=x ? Arrêt du programme ? Si oui, affichage.

4 Non On continue...

8 Non On continue...

15 Non On continue...

16 Non On continue...

23 Non On continue...

42 Non Arrêt et affiche False

Exercice 3

1. Écrire une fonction recherchenaive qui prend en argument une liste L et un élément x et
qui renvoie True si l’élément x est dans la liste et False sinon. Vérification : L’évaluation de
la fonction en ([1,4,5,10,3],10) doit renvoyer True et l’évaluation de la fonction en ([4,
8, 15, 16, 23, 42],7) doit renvoyer False.

Entrée [5]: def recherchenaive(L,x):
for e in L: #création d'une variable e qui parcourt la liste

if e==x: #si e correspond à x
return(True) #la fonction renvoie True

return(False) #si aucun match , la fonction renvoie False

Tester cette fonction.

Entrée [6]: recherchenaive ([1,4,5,10,3],10)

Out [6]: True

Entrée [7]: recherchenaive ([4, 8, 15, 16, 23, 42],7)

Out [7]: False

2. Si la liste L est de taille n (c’est-à-dire contient n éléments), alors le nombre maximal de tests
d’égalité effectués est

n

3

Informatique – ECG1 TP 05

Exercice 4

1. Écrire une fonction nbocc qui prend en argument une liste L et un élément x et qui ren-
voie le nombre d’occurences de x dans la liste. Vérification : L’évaluation de la fonction en
([1,2,0,2,1,1,1],1) doit renvoyer 4.

Entrée [8]: def nbocc(L,x):
compteur = 0
for e in L:

if e==x:
compteur=compteur +1

return(compteur)

Tester cette fonction.

Entrée [9]: nbocc ([1,2,0,2,1,1,1],1)

Out [9]: 4

I.2 Recherche de la place d’un élément dans une liste
Grâce à la recherche séquentielle, on peut aussi déterminer le plus petit indice (position) où se
trouve l’élément x s’il est présent dans la liste. On procède de la manière suivante.

• On parcourt tous les éléments de L un par un grâce à une boucle, à l’aide d’une variable k
qui correspond à l’indice de l’élément dans la liste que l’on regarde.

– Si l’élément de l’étape en cours correspond à l’élément x, on renvoie l’indice de l’élément
en cours.

• Une fois tous les éléments testés, si aucun ne correspond à l’élément x, on renvoie un message
d’erreur.

Exercice 5 Décrire (sur papier) l’algorithme lorsque l’on cherche le plus petit indice où se trouve
l’élément x=10 dans la liste L=[1,4,5,10,3].

k L[k] L[k]=x ? Arrêt du programme ? Si oui, affichage.

0 1 Non On continue...

1 4 Non On continue...

2 5 Non On continue...

3 10 Oui Arrêt et affichage de 3

4 3 x x

Exercice 6 Écrire une fonction indice qui prend en argument une liste L et un élément x et
qui renvoie le plus petit indice où se trouve l’élément x s’il est présent dans la liste, et renvoie le
message “non trouvé” sinon. Vérification : L’évaluation de la fonction en ([1,4,5,10,3],10) doit
renvoyer 3, alors que l’évaluation en ([4, 8, 15, 16, 23, 42],7) doit renvoyer Non trouvé.

Entrée [10]: def indice(L,x):
for k in range(len(L)): #on parcourt les indices de la liste

if L[k]==x: #si l'élément en position k vaut x
return(k) #on renvoie la position de l'élément

return('Non trouvé !') #si aucun match , message d'erreur

Entrée [11]: indice ([1,4,5,10,3],10)

4

Informatique – ECG1 TP 05

Out [11]: 3

Entrée [12]: indice ([4, 8, 15, 16, 23, 42],7)

Out [12]: Non trouvé !

Exercice 7 Écrire une fonction listeindice qui prend en argument une liste L et un élément
x et qui renvoie la liste de tous les indices de position de x dans la liste L (le programme renvoie
une liste vide si l’élément x ne se trouve pas dans L). Vérification : L’évaluation de la fonction
listeindice en ([4,5,4],4) doit renvoyer [0,2].

Entrée [13]: def listeindice(L,x):
P=[]
for k in range(len(L)):

if L[k]==x:
P.append(k)

return(P)

Entrée [14]: listeindice ([4,5,4],4)

Out [14]: [0, 2]

Exercice 8 Écrire une fonction dernierindice qui prend en argument une liste L et un élément
x et qui renvoie le plus grand indice où se trouve l’élément x s’il est présent dans la liste, et
renvoie le message “non trouvé” sinon. Vérification : L’évaluation de la fonction dernierindice
en ([4,5,4],4) doit renvoyer 2.

Entrée [15]: def dernierindice(L,x):
P=listeindice(L,x)
return(P[-1])

Entrée [16]: dernierindice ([4,5,4],4)

Out [16]: 2

I.3 Recherche d’un minimum/maximum d’une liste
Grâce à la recherche séquentielle, on peut aussi déterminer le maximum d’une liste. On procède
de la manière suivante.

• On initialise une variable maxi au premier élément de la liste.

• On parcourt tous les éléments de L un par un grâce à une boucle.

– Si l’élément de l’étape en cours est plus grand (strictement) que le maximum temporaire,
on actualise la valeur du maximum.

– Sinon, on ne fait rien.

5

Informatique – ECG1 TP 05

Exercice 9 Décrire (sur papier) l’algorithme lorsque l’on cherche le maximum de la liste L=[1,2,3,-1].

e maxi (temporaire) Affichage.

1 1

2 2

3 3

-1 3 Arrêt et affichage de 3

Exercice 10 Écrire une fonction maximum qui prend en argument une liste L et qui renvoie le
maximum de cette liste. Vérification : L’évaluation de la fonction maximum en [-3,-5,-10,-1] doit
renvoyer -1.

Entrée [17]: def maximum(L):
maxi = L[0]
for e in L:

if e>maxi:
maxi=e

return(maxi)

Tester cette fonction.
Entrée [18]: maximum ([-3,-5,-10,-1])

Out [18]: -1

Exercice 11 Écrire une fonction minimum qui prend en argument une liste L et qui renvoie le
minimum de cette liste. Vérification : L’évaluation en [1,2,-1,3] doit renvoyer -1.

Entrée [19]: def minimum(L):
mini = L[0]
for e in L:

if e<mini:
mini=e

return(mini)

Tester cette fonction.
Entrée [20]: minimum ([1,2,-1,3])

Out [20]: -1

Exercice 12 Écrire une fonction indiceminimum qui en argument une liste L et qui renvoie la
(première) position du minimum de cette liste. Vérification : L’évaluation en [-3,-5,-10,-1] doit
renvoyer 3.

Entrée [21]: def indiceminimum(L):
mini = L[0]
imini = 0
for k in range(len(L)):

if L[k]<mini:
mini=L[k]
imini=k

return(k)

Entrée [22]: indiceminimum ([-3,-5,-10,-1])

6

Informatique – ECG1 TP 05

Out [22]: 3

Exercice 13 Écrire une fonction secmaximum qui prend en argument une liste L et qui renvoie
la valeur du deuxième maximum de la liste. Si la liste est de taille inférieure ou égale à 1, cette
fonction doit renvoyer None. Vérification : L’évaluation en [3,1,10,5,7] doit renvoyer 7 alors que
l’évaluation en [1] doit renvoyer None.

Entrée [23]: def secmaximum(L):
if len(L):

return('None')
maxi=maximum(L)
M=[x for x in L if x !=maxi]
return(maximum(M))

Tester cette fonction.
Entrée [24]: secmaximum ([3,1,10,5,7])

Out [24]: 7

Entrée [25]: secmaximum ([10,2,-1,3])

Out [25]: 'None'

II Moyenne et variance

Exercice 14 Écrire une fonction somme qui prend en argument une liste L et qui calcule la somme
de tous les éléments. Vérification : L’évaluation en [1,2,3,4,5,6] doit renvoyer 21.

Entrée [26]: def somme(L):
c = 0
for e in L:

c=c+e
return(c)

Entrée [27]: L = [1,2,3,4,5,6]
somme(L)

Out [27]: 21

Soit L = [x1, x2, . . . , xn] une liste de réels. On définit la moyenne de la liste par :

m = 1
n

n∑
k=1

xk.

La variance de L est alors :

V = 1
n

n∑
k=1

(xk −m)2.

7

Informatique – ECG1 TP 05

Exercice 15 Écrire une fonction moyenne qui prend en argument une liste d’entiers et qui renvoie
la moyenne des valeurs d’une liste. Vérification : L’évaluation en [0,20] doit renvoyer 10.

Entrée [28]: def moyenne(L):
s = 0
for e in L:

s = s + e
s = s / len(L)
return s

Entrée [29]: moyenne ([0 ,20])

Out [29]: 10

Exercice 16 Écrire une fonction variance qui prend en argument une liste d’entiers et qui
renvoie la variance des valeurs d’une liste. Vérification : L’évaluation en [0,20] doit renvoyer
100.

Entrée [30]: def variance(L):
m=moyenne(L)
s = 0
for e in L:

s = s + (e-m)**2
s = s / len(L)
return s

Entrée [31]: variance ([0 ,20])

Out [31]: 100

III Comptage dans une liste à l’aide d’un dictionnaire

Exercice 17

1. Ecrire une fonction dico prenant en argument une liste L et renvoyant un dictionnaire dont
les clefs sont les éléments distincts de L et les valeurs associés sont le nombre d’occurrences
de cet élément dans L. Pour ajouter une nouvelle valeur au dictionnaire, on pourra utiliser la
commande nom_dicto[nvclef]=nvvaleur. Vérification : L’évaluation en [5, 13, 2, 9, 5,
1, 13] doit renvoyer {5:2 , 13:2 , 2:1 , 9:1 , 1:1}.

Entrée [32]: def dico(L):
d={}
for e in L:

nvclef=e
nvvaleur=nbocc(L,e)
d[nvclef]= nvvaleur

return(d)

Entrée [33]: dico([5, 13, 2, 9, 5, 1, 13])

Out [33]: {5: 2, 13: 2, 2: 1, 9: 1, 1: 1}

8

Informatique – ECG1 TP 05

2. Ecrire une fonction identiques prenant en argument deux listes L1 et L2, et renvoyant True si
ces deux listes ont les mêmes éléments avec pour chacun le même nombre d’occurrences (pas
forcément à la même place), et False sinon. Vérification : L’évaluation en ([1,2],[2,1])
doit renvoyer True.

Entrée [34]: def identiques(L1,L2):
return(dico(L1)== dico(L2))

Entrée [35]: identiques ([1 ,2] ,[2 ,1])

Out [35]: True

IV Recherche d’un mot dans une chaîne de caractères

Exercice 18

1. Ecrire puis tester une fonction is_mot_position prenant en arguments un mot m, un indice
de position i et une chaîne de caractères s et renvoyant True si le mot m apparaît dans s à
partir de la i-ième position (c’est-à-dire si la mot apparaît et que sa première lettre tombe
exactement en position i), False sinon.
Par exemple :

• is_mot_position (‘‘petit’’,12,‘‘il était un petit homme’’) doit renvoyer True,
• is_mot_position (‘‘petit’’,13,‘‘il était un petit homme’’) doit renvoyer False
• is_mot_position (‘‘petit’’,12,‘‘il était un peti’’) doit renvoyer False

Entrée [36]: def is_mot_position(m,i,s):
if i+len(m)>len(s):

return(False)
for j in range(len(m)):

if s[i+j] != m[j]:
return(False)

return(True)

2. Ecrire puis tester une fonction is_mot prenant en arguments un mot m et une chaîne de
caractères s et renvoyant True si le mot m apparaît dans s False sinon.

Entrée [37]: def is_mot(m,s):
for i in range(len(s)-len(m)+1):

if is_mot_position(m,i,s):
return(True)

return(False)

3. Ecrire puis tester une fonction recherche_mot prenant en arguments un mot m et une chaîne
de caractères s et renvoyant l’indice de la première occurrence du mot m dans la chaîne s si
ce mot y figure, et None sinon.

Entrée [38]: def is_mot(m,s):
for i in range(len(s)-len(m)+1):

if is_mot_position(m,i,s):
return(i)

return(None)

9

Informatique – ECG1 TP 05

4. Ecrire puis tester une fonction occurrences_mot prenant en arguments un mot m et une
chaîne de caractères s et renvoyant le nombre d’occurrences du mot m dans la chaîne s.

Entrée [39]: def occurrences_mot(m,s):
compteur = 0
for i in range(len(s)-len(m)+1):

if is_mot_position(m,i,s):
compteur=compteur +1

return(compteur)

V Exercices en vrac

Exercice 19 Écrire une fonction selectionner, qui prend en argument une liste L et deux entiers
a et b (avec a 6 b) et qui renvoie la liste (éventuellement vide) des éléments de L qui sont compris
(au sens large) entre a et b.

Entrée [40]: def selectionner(L,a,b):
M=[]
for e in L:

if a<=e and e<=b:
M.append(e)

return(M)

Exercice 20 Écrire une fonction contientpositif, qui prend en argument une liste Let qui
renvoie True si la liste contient un nombre strictement positif et False sinon.

Entrée [41]: def contientpositif(L):
for e in L:

if e>0:
return(True)

return(False)

Exercice 21 Écrire une fonction supprimer, qui prend en argument une liste L et un entier x et
qui renvoie une liste constituée des mêmes éléments que L sauf les entiers x.

Entrée [42]: def surpprimer(L,x):
S=[]
for e in L:

if not(e==x):
S.append(e)

return(S)

Exercice 22 Écrire une fonction npplusmoins, qui prend en argument une liste L et renvoie le
couple (p, m) où p est égal à la somme des éléments positifs ou nuls de L et m est égal à la somme
des éléments strictement négatifs de L.

Entrée [43]: def nbplusmoins(L):
m=0
p=0
for e in L:

if e>=0:
p=p+e

else:
m=m+e

return(p,m)

10

Informatique – ECG1 TP 05

Exercice 23 Écrire une fonction valproche qui prend en argument une liste L et un élément x
(qui est dans la liste) et qui renvoie l’élément le plus proche de x, c’est-à-dire l’élément dont l’écart
à x est le plus petit. L’écart entre deux valeurs x et y peut être quantifiée par |x− y|.

Entrée [44]: import numpy as np
def valproche(L,x):

y = L[0]
ecart = np.abs(x-y)
for e in L:

if e != x :
if np.abs(e-x)< ecart :

y = e
ecart = np.abs(x-y)

return(y)

Tester cette fonction.
Entrée [45]: valproche ([1,3,7,13], 14)

Out [45]: 13

Entrée [46]: valproche ([1,3,7,13], 0)

Out [46]: 1

Exercice 24 Écrire une fonction deuxvalproches qui prend en argument une liste L et qui
renvoie les deux éléments les plus proches (c’est-à-dire les deux éléments dont l’écart est le plus
petit parmi tous les couples d’éléments de la la liste).

Entrée [47]: def deuxvalproches(L):
ecart = np.abs(L[0] - L[1])
x=L[0]
y=L[1]
for e in L:

for f in L:
if e != f :

if np.abs(e-f) < ecart :
x = e
y = f
ecart = np.abs(e-f)

return(x,y)

Entrée [48]: #version optimisée
import numpy as np
def deuxvalprochesopt(L):

ecart = np.abs(L[0] - L[1])
x=L[0]
y=L[1]
for i in range(len(L)):

for j in range(i+1, len(L)):
if np.abs(L[i] - L[j]) < ecart :

ecart=np.abs(L[i] - L[j])
x=L[i]
y=L[j]

return(x,y)

Tester cette fonction.
Entrée [49]: deuxvalproches ([1,6,10,9,42])

11

Informatique – ECG1 TP 05

Out [49]: (10,9)

Entrée [50]: deuxvalproches ([1,3,7,13])

Out [50]: (1,3)

Exercice 25 Écrire une fonction croissante qui prend en argument une liste d’entiers et qui
renvoie True si la liste est rangée dans l’ordre croissant et False sinon.

Entrée [51]: def croissante(L):
for k in range(len(L)-1):

if not(L[k]<=L[k+1]):
return(False)

return(True)

Exercice 26 Écrire une fonction tri qui prend en argument une liste L et qui renvoie cette
même liste mais rangée dans l’ordre croissant. On pourra utiliser l’algorithme de tri par sélection
qui se déroule de la manière suivante :

• On cherche le plus petit élément de la liste et on l’échange avec l’élément en position 0.

• On cherche le second plus petit élément de la liste et on l’échange avec l’élément en position
1.

• On continue ainsi jusqu’à ce que le tableau soit entièrement trié.

Entrée [52]: def tri(L):
n = len(L)
for i in range(n-1):

imini = i
for j in range (i+1, n):

if L[j] < L[imini]:
imini = j

L[i], L[imini]= L [imini] , L[i]
return(L)

12

	Recherche dans une liste par balayage
	Recherche d'un élément
	Recherche de la place d'un élément dans une liste
	Recherche d'un minimum/maximum d'une liste

	Moyenne et variance
	Comptage dans une liste à l'aide d'un dictionnaire
	Recherche d'un mot dans une chaîne de caractères
	Exercices en vrac

