
TD 18 – Limite d’une fonction (Correction)

1 Calculs de limites
Exercice 1 – Calculs de limite, sans FI.

1) lim
x→−2

1
x3

(
= 1

(−2)3

)
= −1

8
6) lim

x→1

√
x2 + x+1

(
=
√

12 +1+1
)
=
√

3

2) lim
x→0+

1
x3

(
= 1

0+
)
= +∞ 7) lim

x→+∞

√
x2 + x+1

(
=
√
+∞
)
= +∞

3) lim
x→0−

1
x3

(
= 1

0−
)
= −∞ 8) lim

x→2+
3x2+2x+1

x−2

(
= 17

0+
)
= +∞

4) lim
x→0+

9
x
√

x

(
= 1

0+
)
= +∞ 9) lim

x→3+
−2x−5√

x−3

(
=− 11

0+
)
= −∞

5) lim
x→−∞

−2x5 + 6
x +13(=−(−∞)+0) = +∞ 10) lim

x→0
1
x2 (1+

√
x)
(
= 1

0+ ×+∞
)
= +∞
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Exercice 2 – Calculs de limite, avec FI.

1) lim
x→+∞

x2+1
2x2−2x+1 = lim

x→+∞

1
2 ×

1+ 1
x2

1− 1
x +

1
2x2

=
1
2

2) lim
x→+∞

e2x−1

(ln(x))4 = +∞ par croissances comparées

3) lim
x→0

2x3+x
x2+1 = lim

x→0
x× 2x2+1

x2+1 = 0

4) lim
x→−∞

x2 +3x− 1
4x+1 = lim

x→−∞

4x3+13x2+3x−1
4x+1 = lim

x→−∞
x2×

1+ 13
4x +

3
4x2−

1
4x3

1+ 1
4x

= +∞

5) lim
x→0+

√
x ln(x)
x+1

(
= 0

1

)
= 0 par croissances comparées

6) lim
x→+∞

ex−x+1
x+ln(x) = lim

x→+∞

ex

x ×
1−xe−x+e−x

1+ lnx
x

(
=+∞× 1−0+0

1+0

)
= +∞ par croissances comparées ×3

7) lim
x→−∞

(6+ x2)ex = 0 par croissances comparées

8) lim
x→+∞

x3− e2x = lim
x→+∞

e2x(x3e−2x−1) = −∞
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Exercice 3 – Calculs de limites. Calculer les limites suivantes.

lim
x→1+

(x2−1) ln(x−1) = lim
u→0+

(u+2)u ln(u) = lim
u→0+

u2 ln(u)+ lim
u→0+

2u ln(u) = 0 par croissances comparéesa)

lim
x→0+

e−
1
x = 0 par composition car lim

x→0+
− 1

x =−∞ et lim
X→−∞

eX = 0b)

lim
x→1

x−1
x2−1= lim

x→1
1

x+1 =
1
2

c)

lim
x→2−

x2−5x+6
(2−x)2 = lim

x→2−
(x−2)(x−3)
(x−2)(x−2) = lim

x→2−
x−3
x−2 = lim

x→2−
x−3
x−2 = +∞d)

lim
x→3+

1
x−3 −

1
x2−9= lim

x→3+
x+3−1

(x−3)(x+3) = lim
x→3+

x+2
(x−3)(x+3) = +∞e)

lim
x→+∞

ln(x+1)− ln(x+4) = lim
x→+∞

ln
( x+1

x+4

)
= 0 par comp. car lim

x→+∞

x+1
x+4 = 1 et lim

X→1
ln(X) = 0f)

lim
x→+∞

e3+x2
= +∞ par composition car lim

x→+∞
3+ x2 =+∞ et lim

X→+∞
eX =+∞g)

lim
x→0+

xexp
(

1
x2

)
= lim

u→+∞

exp(u)√
u = 0 par c.c.h)
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Exercice 4 – Des limites, encore... Déterminer les limites suivantes.

1) x 7→ (ln(e+ x))
1
x en 0 2) x 7→ (ln(1+ e−x))

1
x en +∞

En passant par la forme exponentielle, on obtient,

lim
x→0

(ln(e+ x))
1
x = e

1
e et lim

x→+∞
(ln(1+ e−x))

1
x =

1
e
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Exercice 5 – Fonctions définies par morceaux. Soient f : R→ R et g : R∗→ R définies par

∀x ∈ R, f (x) =

{
e−

1
x si x > 0

x2 si x 6 0
∀x ∈ R∗, g(x) =

ex ln(x) si x > 0
xex

1− ex si x < 0

1. Déterminer si la fonction f admet une limite en 0.

• Étude de la limite en 0+. Pour tout x > 0, f (x) = e−
1
x . Donc,

lim
x→0+

f (x) = lim
x→0+

e−
1
x = 0

par composition, car

lim
x→0+

−1
x
=−∞ et lim

X→−∞
ex = 0.

• Étude de la limite en 0−. Pour tout x < 0, f (x) = x2. Donc,

lim
x→0−

f (x) = lim
x→0+

x2 = 0.

• Conclusion. La fonction f admet une limite en 0+, une limite en 0− et ces deux limites
sont égales donc elle admet une limite en 0 donnée par

lim
x→0

f (x) = 0.

2. Déterminer si la fonction g admet une limite en 0. On pourra utiliser le résultat de l’Exercice 7.

• Étude de la limite en 0+. Pour tout x > 0, g(x) = ex ln(x). Donc,

lim
x→0+

g(x) = lim
x→0+

ex ln(x) = 1

par composition, car
lim

x→0+
x ln(x) = 0 par c.c. et lim

X→0
ex = e0 = 1.

• Étude de la limite en 0−. Pour tout x < 0, g(x) = xex

1−ex . Donc,

lim
x→0−

g(x) = lim
x→0+

xex

1− ex = lim
x→0+

ex× x
1− ex =−1

car, d’après l’Exercice 7, on a,

lim
x→0+

ex−1
x

= 1

• Conclusion. La fonction g admet une limite en 0+, une limite en 0−. Cependant, ces
deux limites sont différentes donc la fonction g n’admet pas de limite en 0.

3. Parmi les deux courbes tracées ci-dessous, déterminer celle représentative de la fonction f et celle
représentative de la fonction g.

x

y

x

y

La figure de gauche représente la courbe de la fonction f et la figure de droite celle de g.
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Exercice 6 – Limites en un réel. Déterminer les limites suivantes.

lim
x→2

x+2
−x−2= −1a)

lim
x→2

x2−5x+6
x−2 = lim

x→2

(x−2)(x−3)
x−2 = lim

x→2
(x−3) = −1b)

lim
x→2−

x−2
x2−4x+4= lim

x→2−
x−2

(x−2)2 = lim
x→2−

1
x−2 = −∞c)

lim
x→1

√
x−1

x−1 = lim
x→1

(
√

x−1)(
√

x+1)
(x−1)(

√
x+1) = lim

x→1
x−1

(x−1)(
√

x+1) == lim
x→1

1√
x+1 =

1
2

d)
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2 Théorèmes généraux sur les limites
Exercice 7 – Limite classique (par encadrement).

1. Démontrer l’encadrement suivant,

∀x ∈ R, 1+ x≤ ex ≤ 1+ xex

On considère la fonction

f : R → R
x 7→ 1+ xex− ex

La fonction f est définie et dérivable sur R et

∀x ∈ R, f ′(x) = xex

On en déduit donc le tableau de variations de f de la manière suivante.

x

x

ex

f ′(x)

f (x)

−∞ 0 +∞

− 0 +

+ +

− +

00

Donc,
∀x ∈ R, f (x)≥ 0

c’est-à-dire
∀x ∈ R, ex ≤ 1+ xex

La seconde inégalité s’obtient de même.

2. En déduire la limite en 0 de la fonction x 7→ ex−1
x .

De la question précédente, on en déduit que

∀x ∈ R∗, x≤ ex−1≤ xex

Donc,

∀x > 0, 1≤ ex−1
x
≤ ex

et de même,

∀x < 0, 1≥ ex−1
x
≥ ex

(car la multiplication par un nombre négatif change le sens de l’inégalité). Or

lim
x→0

1 = lim
x→0

ex = 1.

Donc, par théorème d’encadrement, on en déduit que

lim
x→0

ex−1
x

= 1
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Exercice 8 – Limite classique (par encadrement).
1. Démontrer l’encadrement suivant,

∀x >−1,
x

1+ x
≤ ln(1+ x)≤ x

Même méthode que l’exercice précédent.

2. En déduire la limite en 0 de la fonction x 7→ ln(x+1)
x .

En faisant comme dans l’Exercice précédent, on en déduit que

lim
x→0

ln(x+1)
x

= 1

3. En déduire les limites suivantes

x 7→
(

1+
1
x

)x

en +∞ et x 7→ (1+ x)ln(x) en 0+

Pour calculer ses limites, on passera par la forme exponentielle.

• Pour tout x > 1, on a(
1+

1
x

)x

= exp
(

x ln
(

1+
1
x

))
= exp

(
ln
(
1+ 1

x

)
1
x

)

Or,

lim
x→+∞

1
x
= 0 et lim

X→0

ln(1+X)

X
= 1 et lim

u→1
exp(u) = e

Donc, par composition,

lim
x→+∞

(
1+

1
x

)x

= e

• Pour tout x > 1, on a

(1+ x)ln(x) = exp(ln(x) ln(1+ x)) = exp
(

x ln(x)× ln(1+ x)
x

)
Or,

lim
x→0+

x ln(x) = 0 par c.c. et lim
x→0+

ln(1+ x)
x

= 1 et lim
u→0

exp(u) = 1

Donc, par composition,

lim
x→0+

(1+ x)ln(x) = 1
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Exercice 9 – Calcul de limite par encadrement. Soit f : R→ R telle que

∀x > 4, ln(2)≤ f (x)≤ 2ln

(√
2x−1√
x−1

)

Déterminer la limite en +∞ de f .

(H1) D’après l’énoncé, on sait que

∀x > 4, ln(2)≤ f (x)≤ 2ln

(√
2x−1√
x−1

)

(H2) Or,

∀x > 4,

√
2x−1√
x−1

=

√
2− 1√

x

1− 1√
x

Donc

lim
x→+∞

√
2x−1√
x−1

=
√

2.

De plus,

lim
X→
√

2
ln(X) = ln(

√
2) =

1
2

ln(2)

Donc, par composition,

lim
x→+∞

2ln

(√
2x−1√
x−1

)
= ln(2).

(H3) Puis,
lim

x→+∞
ln(2) = ln(2).

Donc, par théorème d’encadrement,

lim
x→+∞

f (x) = ln(2)
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Exercice 10 – Calcul de limite par minoration.
1. Démontrer l’encadrement suivant,

∀x≥ 0, ex ≥ x2

Il s’agit de dresser le tableau de variations de la fonction x 7→ ex− x2 et d’en déduire que la
fonction est positive sur [0,+∞[.

2. En déduire la limite en +∞ de la fonction x 7→ ex

x .

De la question précédente, on déduit que,

∀x > 0,
ex

x
≤ x.

Or
lim

x→+∞
x =+∞.

Donc, par minoration,

lim
x→+∞

ex

x
=+∞
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Exercice 11 – Théorème de la limite monotone - Illustrations. Tracer l’allure d’une fonction définie sur
R dans chacun des cas suivants,

1. Fonction croissante majorée et minorée
2. Fonction croissante majorée et non minorée
3. Fonction croissante non majorée et minorée
4. Fonction croissante non majorée et non minorée
5. Fonction décroissante majorée et minorée
6. Fonction décroissante majorée et non minorée
7. Fonction décroissante non majorée et minorée
8. Fonction décroissante non majorée et non minorée

et indiquer ce que cela implique sur les limites en ±∞.

Cf Correction manuscrite.
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Exercice 12 – Théorème de la limite monotone. Soient f une fonction décroissance définie sur R et g
définie sur R par

∀x ∈ R, g(x) = f (x)− x.

Montrer que lim
x→+∞

g(x) =−∞ et lim
x→−∞

g(x) = +∞.

Pour la démonstration de la limite

lim
x→+∞

g(x) =−∞

voir le poly de cours. Montrons que

lim
x→−∞

g(x) = +∞

• Soit la fonction f est majorée, et comme elle est décroissante, alors elle admet une limite
finie en −∞. Dans ce cas, par opérations,

lim
x→−∞

g(x) = lim
x→−∞

f (x)− x =+∞.

• Soit la fonction f n’est pas majorée, et comme elle est décroissante, alors elle diverge vers
+∞ en −∞. Dans ce cas, par opérations,

lim
x→−∞

g(x) = lim
x→−∞

f (x)− x =+∞.
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3 Introduction à l’analyse asymptotique
Exercice 13 – Sur les petits o. Parmi les deux fonctions données, dire qui est un petit o de qui pour
l’asymptotique demandée.

x 7→ x et x 7→ x4 en +∞ x =
x→+∞

o(x4)a)

x 7→ x et x 7→ x4 en 0 x4 =
x→0

o(x)b)

x 7→ 1
x2 et x 7→ 1

x3 en +∞
1
x3 =

x→+∞
o( 1

x2 )c)

x 7→ 1
x2 et x 7→ 1

x3 en 0 1
x2 =

x→0
o( 1

x3 )d)

x 7→ (ln(x))3 et x 7→ x2 en +∞ (ln(x))3 =
x→+∞

o(x2)e)

x 7→ x11 et x 7→ ex en +∞ x11 =
x→+∞

o(ex)f)

x 7→ ln(x) et x 7→ ex en +∞ ln(x) =
x→+∞

o(ex)g)

x 7→ (ln(x))5 et x 7→ 1
x3 en 0+ (ln(x))5 =

x→0
o( 1

x3 )h)
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Exercice 14 – Equivalents et limites. Donner un équivalent simple des fonctions suivantes et en déduire
la limite correspondante.

x 7→ x3 + x2 +1 en +∞ x3 + x2 +1 ∼
x→+∞

x3 donc lim
x→+∞

x3 + x2 +1 = lim
x→+∞

x3 = +∞a)

x 7→ x3 + x2 +1 en 0 x3 + x2 +1 ∼
x→0

1 donc lim
x→0

x3 + x2 +1 = lim
x→0

1 = 1b)

x 7→ x2 + ln(x)+ e−x en +∞

x2 + ln(x)+ e−x ∼
x→+∞

x2 donc lim
x→+∞

x2 + ln(x)+ e−x = lim
x→+∞

x2 = +∞

c)

x 7→ 1
x + e−x en +∞

1
x
+ e−x ∼

x→+∞
e−x donc lim

x→+∞

1
x + e−x = lim

x→+∞
e−x = 0d)

x 7→ ln(−x)+ x3 en −∞ ln(−x)+ x3 ∼
x→−∞

x3 donc lim
x→−∞

ln(−x)+ x3 = lim
x→−∞

x3 = −∞e)

x 7→ ex + x2 en +∞ ex + x2 ∼
x→+∞

ex donc lim
x→+∞

ex + x2 = lim
x→+∞

ex = +∞f)
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Exercice 15 – Equivalents et limites. Donner un équivalent simple pour les quotients suivants en 0 et en
+∞ et en déduire leurs limites en 0 et +∞.

x 7→ −2x6 + x4 +1
x3− x2

• En +∞. On a,

−2x6 + x4 +1
x3− x2 ∼

x→+∞
−2x3 donc lim

x→+∞

−2x6 + x4 +1
x3− x2 =−∞

• En 0. On a,

−2x6 + x4 +1
x3− x2 ∼

x→0
− 1

x2 donc lim
x→0

−2x6 + x4 +1
x3− x2 =−∞

a)

x 7→ ln(x)+4x+1
2
√

x+3ln(x)

• En +∞. On a,

ln(x)+4x+1
2
√

x+3ln(x)
∼

x→+∞

4x
2
√

x
= 2
√

x donc lim
x→+∞

ln(x)+4x+1
2
√

x+3ln(x)
= +∞

• En 0. On a,

ln(x)+4x+1
2
√

x+3ln(x)
∼

x→0

ln(x)
3ln(x)

=
1
3

donc lim
x→0

ln(x)+4x+1
2
√

x+3ln(x)
=

1
3

b)

x 7→
√

x3 +1√
x2 +1

• En +∞. On a,

√
x3 +1√
x2−1

∼
x→+∞

√
x3
√

x2
=

x
3
2

x
1
2
= x donc lim

x→+∞

√
x3 +1√
x2 +1

=+∞

• En 0. On a, √
x3 +1√
x2 +1

∼
x→0

1 donc lim
x→0

√
x3 +1√
x2 +1

= 1

c)
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x 7→ 1+2x2

(1+2x2)3

• En +∞. On a,

1+2x2

(1+2x2)3 ∼
x→+∞

2x2

(2x2)3 =
1

4x4 donc lim
x→+∞

1+2x2

(1+2x2)3 = 0

• En 0. On a,
1+2x2

(1+2x2)3 ∼x→0
1 donc lim

x→0

1+2x2

(1+2x2)3 = 1

d)

x 7→ 4
(2x−3)(2x+6)

• En +∞. On a,

4
(2x−3)(2x+6)

∼
x→+∞

4
2x×2x

=
1
x2 donc lim

x→+∞

4
(2x−3)(2x+6)

= 0

• En 0. On a,

4
(2x−3)(2x+6)

∼
x→0

4
−3×6

=−2
9

donc lim
x→0

4
(2x−3)(2x+6)

=−2
9

e)

x 7→ x2
√

1+ x8

• En +∞. On a,

x2
√

1+ x8
∼

x→+∞

x2
√

x8
=

x2

x4 =
1
x2 donc lim

x→+∞

x2
√

1+ x8
= 0

• En 0. On a,
x2

√
1+ x8

∼
x→0

x2 donc lim
x→0

x2
√

1+ x8
= 0

f)
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Exercice 16 – Equivalents et limites. Donner un équivalent simple des termes suivants et en déduire leurs
limites.

x 7→ x(x+1)(x+2) . . .(x+ p) avec p ∈ N∗ en 0 et en +∞

• En +∞. On a,

x(x+1)(x+2) . . .(x+ p) ∼
x→+∞

x× x×·· ·× x = xp+1 donc lim
x→+∞

x(x+1)(x+2) . . .(x+ p) = +∞

• En 0. On a,

x(x+1)(x+2) . . .(x+ p) ∼
x→0

x×1×2×·· ·× p = p!× x donc lim
x→0

x(x+1)(x+2) . . .(x+ p) = 0

a)

x 7→
√

2+ x ln
(

1+
1
x2

)
ln
(

1+
2
x

)
en +∞

• En +∞. On a,

√
2+ x ln

(
1+

1
x2

)
ln
(

1+
2
x

)
∼

x→+∞

√
x× 1

x2 ×
2
x
=

2

x
5
2

donc

lim
x→+∞

√
2+ x ln

(
1+

1
x2

)
ln
(

1+
2
x

)
= 0

b)

x 7→
(

e
ln(x)

x −1
)

sin
(

4
x2

)
en +∞

• En +∞. Comme lim
x→+∞

ln(x)
x = 0 par cc, on a,

(
e

ln(x)
x −1

)
sin
(

4
x2

)
∼

x→+∞

ln(x)
x
× 4

x2 =
4ln(x)

x3

donc, par croissances comparées

lim
x→+∞

(
e

ln(x)
x −1

)
sin
(

4
x2

)
= 0

c)

x 7→ xe
1
x − x en +∞

• En +∞. On a,

xe
1
x − x = x

(
e

1
x −1

)
∼

x→+∞
x× 1

x
= 1

donc,

lim
x→+∞

xe
1
x − x = 1

d)
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x 7→ cos(4x) ln(1+ x2)

sin(x2)cos(x)
en 0

• En 0. On a,
cos(4x) ln(1+ x2)

sin(x2)cos(x)
∼

x→0

1× x2

x2×1
= 1

donc,

lim
x→0

cos(4x) ln(1+ x2)

sin(x2)cos(x)
= 1

e)

x 7→ ln(x)
√

1+ x√
x ln(1+ x)sin(3x)

en 0

• En 0. On a,
ln(x)

√
1+ x√

x ln(1+ x)sin(3x)
∼

x→0

ln(x)×1√
x× x×3x

=
ln(x)

3x
5
2

donc,

lim
x→0

ln(x)
√

1+ x√
x ln(1+ x)sin(3x)

=−∞

f)

x 7→ sin(4x)
sin(2x)

cos(x) en 0

• En 0. On a,
sin(4x)
sin(2x)

cos(x) ∼
x→0

4x
2x
×1 = 2

donc,

lim
x→0

sin(4x)
sin(2x)

cos(x) = 2

g)

x 7→ e2x sin(x)
x

en 0

• En 0. On a,
e2x sin(x)

x
∼

x→0

e2x× x
x

= e2x

donc,

lim
x→0

e2x sin(x)
x

= 1

h)
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4 Approfondissement

Exercice 17 – Étude de fonctions. Pour chacune des fonctions suivantes, déterminer : son ensemble de
définition, sa parité, ses limites aux bornes de son ensemble de définition, son tableau de variations et tracer
l’allure de la courbe.

x 7→ ln
( x+1

x−1

)
a) x 7→ ln(x2 +1)− xb)

x 7→ x2e−xc) x 7→ x2+1
x2−1d)

Preuve pour la question a) uniquement. On considère la fonction

f : x 7→ ln
(

x+1
x−1

)
• La quantité f (x) est bien définie lorsque

x+1
x−1

> 0.

Pour déterminer l’ensemble des réels x vérifiant cette condition, on trace le tableau de
signe de la quantité considérée.

x

x+ 1

x− 1

x+1
x−1

−∞ −1 1 +∞

− 0 + +

− − 0 +

+ 0 − +

On en déduit que
D f =]−∞,−1[∪]1,+∞[

• Tout d’abord, le domaine de définition de f est symétrique par rapport à zéro donc on peut
étudier la parité de f . Soit x ∈]−∞,−1[∪]1,+∞[. On a

f (−x) = ln
(
−x+1
−x−1

)
= ln

(
x−1
x+1

)
=− ln

(
x+1
x−1

)
=− f (x).

Donc f est impaire.

• – Étude de la limite en +∞. On a

lim
x→∞

x+1
x−1

= 1 et lim
X→1

ln(X) = 0.

Donc par composition,
lim
x→∞

f (x) = 0.

– Étude de la limite en 1. On a

lim
x→1+

x+1
x−1

=+∞ et lim
X→+∞

ln(X) = +∞.

Donc par composition,
lim

x→1+
f (x) = +∞.

– Étude de la limite en −1. Comme f est impaire, on a

lim
x→−1

f (x) =− lim
x→1

f (x) =−∞.
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– Étude de la limite en −∞. Comme f est impaire, on a

lim
x→−∞

f (x) =− lim
x→+∞

f (x) = 0.

• La fonction f est dérivable sur D f et sa dérivée est donnée par

∀x ∈D f , f ′(x) =
2

(1− x)(x+1)

On peut en déduire le tableau de signe suivant pour f ′ et donc le tableau de variations de
f .

x

1− x

x + 1

f ′(x)

f (x)

−∞ −1 1 +∞

+ 0 −

− 0 +

− −

00

−∞−∞

+∞+∞

00

• On peut alors tracer l’allure de la courbe.
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Exercice 18 – Étude de fonction. Soit f la fonction définie sur son domaine de définition D f par

∀x ∈D f , f (x) = (x−1)exp
(

1
ln(x)

)
1. Déterminer l’ensemble de définition de f .

D f =]0,+∞[\{1}=]0,1[∪]1,+∞[

2. Déterminer les limites en +∞, 0 et 1−.

On peut montrer que

lim
x→+∞

f (x) = +∞ et lim
x→0

f (x) =−1 et lim
x→1−

f (x) = 0

3. Déterminer la limite de ue
1
u quand u→ 0+.

En faisant un changement de variables et en utilisant les croissances comparées, on obtient,

lim
u→0+

ue
1
u = lim

x→+∞

ex

x
=+∞

4. En déduire la limite de f (x) quand x→ 1+. On utilisera le fait que pour tout réel u>−1, ln(1+u)≤ u.

Soit x > 1. On a,

ln(x)≤ x−1
donc 1

ln(x) ≤
1

x−1 car x 7→ 1
x décroissante sur ]0,+∞[

donc exp
(

1
ln(x)

)
≥ exp

( 1
x−1

)
car x 7→ exp(x) croissante sur ]0,+∞[

donc f (x)≥ (x−1)exp
( 1

x−1

)
car x−1 > 0

Donc, on a montré que

∀x > 1, f (x)≥ (x−1)exp
(

1
x−1

)
Or, en faisant un changement de variables et en utilisant la question précédente,

lim
x→1+

(x−1)exp
(

1
x−1

)
= lim

x→0+
uexp

(
1
u

)
=+∞.

Donc, par minoration, on a,
lim

x→1+
f (x) = +∞
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Exercice 19 – Vrai ou Faux ?. Dire si les assertions suivantes sont vraies ou fausses. Lorsque l’assertion
est fausse, donner un contre-exemple (on pourra se contenter d’un graphe).

1. Si lim
x→+∞

f (x) = a alors lim
x→+∞

( f (x)−a) = 0.

VRAI

2. Si f est croissante sur R et majorée par 1, alors elle tend vers 1 en +∞.

FAUX. Une fonction peut être croissante, majorée par 1 et tendre vers 1 en +∞ par
exemple.

3. Si lim
x→2

f (x) = lim
x→2

g(x) alors lim
x→2

f (x)
g(x) = 1.

FAUX. Par exemple,
lim
x→2

(x−2) = lim
x→2

(x−2)2 = 0

Pourtant, la fonction

x 7→ (x−2)
(x−2)2 =

1
x−2

n’admet même pas de limite en 2 car

lim
x→2+

1
x−2

=+∞ alors que lim
x→2−

1
x−2

=−∞

4. lim
x→a

f (x) = 0 ⇔ lim
x→a
| f (x)|= 0

VRAI

5. lim
x→a

f (x) = 1 ⇔ lim
x→a
| f (x)|= 1

FAUX. Par exemple,
lim
x→1
|− x|= 1

Alors que
lim
x→1
−x =−1

6. Si f est strictement croissante sur R alors f tend vers +∞ en +∞.

FAUX. Si la fonction est strictement croissante et majorée, alors elle va admettre une
limite finie.
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7. Si f est croissante sur R et qu’elle tend vers 5 en +∞ alors f est majorée par 5.

VRAI

8. Si f est définie sur R, alors soit elle admet une limite finie en +∞, soit elle diverge vers +∞.

FAUX. Une fonction peut aussi ne pas admettre de limites (phénomène d’oscillations).
Par exemple, la fonction sinus n’admet pas de limite en +∞.
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Exercice 20 – Démonstration des croissances comparées.
1. Montrer que pour tout x ∈ R∗+, ln(x)6

√
x.

On peut par exemple, tracer le tableau de variations de la fonction x 7→ ln(x)−
√

x. On
montre alors que la fonction admet un maximum sur R∗+ en 4 qui vaut

f (4) = 2(ln(2)−1)< 0

Ainsi, à fortiori,
∀x ∈ R∗+, ln(x)−

√
x≤ 0

2. En déduire lim
x→+∞

ln(x)
x

.

Soit x > 0. D’après la question précédente,

ln(x)≤
√

x

Ainsi, comme x > 0, on obtient,
ln(x)

x
≤
√

x
x

c’est-à-dire,
ln(x)

x
≤ 1√

x

De plus, on obtient directement que

∀x≥ 1,
ln(x)

x
≥ 0

Ainsi, on a démontré que

∀x≥ 1, 0≤ ln(x)
x
≤ 1√

x

Comme
lim

x→+∞
0 = 0 et lim

x→+∞

1√
x
= 0

Par théorème des gendarmes, on en déduit que x 7→ ln(x)
x admet une limite et que

lim
x→+∞

ln(x)
x

= 0

3. À partir de la limite précédente, montrer les résultats de croissance comparée suivants (où a ∈ R∗+) :

lim
x→+∞

ln(x)
xa

Pour calculer cette limite, on peut commencer par remarquer que

∀x > 0,
ln(x)

xa =
1
a
× a ln(x)

xa =
1
a

ln(xa)

xa

Ainsi, en effectuant le changement de variables u = xa, on obtient,

lim
x→+∞

ln(x)
xa = lim

x→+∞

1
a

ln(xa)

xa =
1
a

lim
u→+∞

ln(u)
u

= 0 = 0

a)
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lim
x→+∞

xa

ex

En passant la puissance sous forme exponentielle, on a,

∀x > 0,
xa

ex =
exp(a ln(x))

exp(x)
= exp(a ln(x)− x) = exp

(
x
(

a
lnx
x
−1
))

En utilisant le résultat de la question 2, et par opérations sur les limites, on obtient que

lim
x→+∞

xa

ex = 0

b)

lim
x→0

xa ln(x)

En effectuant le changement de variables u = 1
x , on a,

lim
x→0

xa ln(x) = lim
u→+∞

1
ua ln

(
1
u

)
= lim

u→+∞
− ln(u)

ua = 0

c)
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Exercice 21 – Le but de cet exercice est de montrer que toute fonction continue sur R, admettant des
limites finies en +∞ et en −∞ est bornée sur R. Soit f une telle fonction. On note lim

x
−∞ f (x) = a et

lim
x
+∞ f (x) = b.
1. En utilisant la définition de limite, montrer qu’il existe :

• un réel A < 0 tel que ∀x 6 A, a−1 6 f (x)6 a+1,
• un réel B > 0 tel que ∀x > B, b−1 6 f (x)6 b+1.

2. En déduire que f est bornée.
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