TD 4: Nombres réels, nombres complexes

Éléments de correction

EXERCICE 3

Démontrer l'inégalité "classique" :
$$\forall (a,b) \in \mathbb{R}^2, |ab| \leqslant \frac{a^2 + b^2}{2}.$$

Soit
$$(a, b) \in \mathbb{R}^2$$
, $(a - b)^2 = a^2 - 2ab + b^2$ et $(a - b)^2 \ge 0$ donc $ab \le \frac{a^2 + b^2}{2}$.
On a également $(a + b)^2 = a^2 + 2ab + b^2$ et $(a + b)^2 \ge 0$ donc $-ab \le \frac{a^2 + b^2}{2}$.

On a également
$$(a+b)^2 = a^2 + 2ab + b^2$$
 et $(a+b)^2 \ge 0$ donc $-ab \le \frac{a^2 + b^2}{2}$.

D'où
$$-\frac{a^2+b^2}{2} \le ab \le \frac{a^2+b^2}{2}$$
.

Ainsi
$$|ab| \le \frac{a^2 + b^2}{2}$$
 pour tous réels a et b .

EXERCICE 4

Les questions sont indépendantes.

1. Montrer que $\forall (x, y) \in \mathbb{R}^2$, $|x| + |y| \le |x + y|$.

Soit $(x, y) \in \mathbb{R}^2$, $|x| + |y| \le x + y$. Donc |x| + |y| est un entier relatif inférieur ou égal à x + y.

 $\lfloor x + y \rfloor$ est le plus grand entier relatif inférieur ou égal à x + y donc $\lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor$

2. Montrer que $\forall x \in \mathbb{R}, \forall \alpha \in \mathbb{Z}, |x + \alpha| = |x| + \alpha$.

Soit $x \in \mathbb{R}$ et soit $\alpha \in \mathbb{Z}$.

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1 \text{ donc } \lfloor x \rfloor + \alpha \le x + \alpha < (\lfloor x \rfloor + \alpha) + 1.$$

 $\lfloor x \rfloor + \alpha$ est un entier relatif donc $\lfloor \lfloor x + \alpha \rfloor = \lfloor x \rfloor + \alpha \rfloor$

EXERCICE 7

1. Justifier que $\forall n \in \mathbb{N}^*, \left(n + \frac{1}{2}\right)^2 < n^2 + n + 1 < (n+1)^2$.

Soit
$$n \in \mathbb{N}^*$$
, $\left(n + \frac{1}{2}\right)^2 = n^2 + n + \frac{1}{4}$.

$$\frac{1}{4} < 1 \text{ donc } n^2 + n + \frac{1}{4} < n^2 + n + 1. \text{ Alors } \left(n + \frac{1}{2}\right)^2 < n^2 + n + 1.$$

De plus, $(n+1)^2 = n^2 + 2n + 1$ et $n \in \mathbb{N}^*$, donc 2n > n et donc $n^2 + 2n + 1 > n^2 + n + 1$. On en déduit que $(n + 1)^2 > n^2 + n + 1$.

Donc
$$\forall n \in \mathbb{N}^*, \left(n + \frac{1}{2}\right)^2 < n^2 + n + 1 < (n+1)^2$$
.

2. Montrer que $\left| 2\sqrt{n^2 + n + 1} \right|$ est un nombre impair pour tout $n \in \mathbb{N}^*$.

Soit $n \in \mathbb{N}^*$, $0 < \left(n + \frac{1}{2}\right)^2 < n^2 + n + 1 < (n+1)^2$ donc par croissante sur de la

fonction racine carrée sur $[0; +\infty[$, $n + \frac{1}{2} < \sqrt{n^2 + n + 1} < n + 1$.

Alors $2n+1 < 2\sqrt{n^2+n+1} < 2n+2$ et donc $\left| 2\sqrt{n^2+n+1} \right| = 2n+1$.

Ainsi $\left| 2\sqrt{n^2+n+1} \right|$ est un nombre impair pour tout $n \in \mathbb{N}^*$.

EXERCICE 10

5. Montrer que $\forall \theta \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}, \frac{e^{i\theta} - 1}{e^{i\theta} + 1} = i \tan \frac{\theta}{2}$.

Soit $\theta \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}.$

$$\frac{e^{i\theta}-1}{e^{i\theta}+1} = \frac{e^{i\frac{\theta}{2}}\left(e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}}\right)}{e^{i\frac{\theta}{2}}\left(e^{i\frac{\theta}{2}}+e^{-i\frac{\theta}{2}}\right)} = \frac{2i\sin\left(\frac{\theta}{2}\right)}{2\cos\left(\frac{\theta}{2}\right)} = i\tan\left(\frac{\theta}{2}\right).$$

Ainsi
$$\forall \theta \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}, \frac{e^{i\theta} - 1}{e^{i\theta} + 1} = i \tan \frac{\theta}{2}$$

EXERCICE 11

1. Montrer que $\forall (a, b) \in \mathbb{R}^2$, $\cos(a+b) = \cos a \cos b - \sin a \sin b$ et $\sin(a+b) = \sin a \cos b + \cos a \sin b$.

Soit
$$(a, b) \in \mathbb{R}^2$$
.

$$e^{i(a+b)} = e^{ia}e^{ib}$$

$$= (\cos a + i\sin a)(\cos b + i\sin b)$$

$$= (\cos a\cos b - \sin a\sin b) + i(\cos a\sin b + \sin a\cos b)$$

Donc
$$\cos(a+b) = \operatorname{Re}\left(e^{i(a+b)}\right) = \cos a \cos b - \sin a \sin b$$
 et $\sin(a+b) = \operatorname{Im}\left(e^{i(a+b)}\right) = \cos a \sin b + \sin a \cos b$.

2. Montrer que $\forall (a, b, t) \in \mathbb{R}^3, \exists (A, \phi) \in \mathbb{R}_+ \times \mathbb{R}/a\cos t + b\sin t = A\cos(t - \phi)$. Soit $(a, b, t) \in \mathbb{R}^3$.

Analyse: On suppose qu'il existe A > 0 et $\varphi \in \mathbb{R}$ tels que $a\cos t + b\sin t = A\cos(t - \phi)$.

Puisque $\cos(t-\varphi) = \cos t \cos \varphi + \sin t \sin \varphi$. alors par identification, $a = A\cos\varphi$ et $b = A\sin\varphi$.

Synthèse: Posons $A = \sqrt{a^2 + b^2}$.

Cas 1: Si a = b = 0, alors A = 0, et $a \cos t + b \sin t = 0 = A \cos(t - \varphi)$, quel que soit φ . Le résultat est donc valable.

Cas 2 : Si $(a, b) \neq (0, 0)$, alors A > 0. On peut donc définir $\varphi \in \mathbb{R}$ tel que : $\cos \varphi = \frac{a}{A} \operatorname{et} \sin \varphi = \frac{b}{A}.$

On a alors $A\cos(t-\varphi) = A\cos t\cos\varphi + A\sin t\sin\varphi = a\cos t + b\sin t$.

Ainsi, $\forall (a, b, t) \in \mathbb{R}^3, \exists (A, \phi) \in \mathbb{R}_+ \times \mathbb{R}/a \cos t + b \sin t = A \cos(t - \phi)$

EXERCICE 14

Soit f l'application du plan dans lui-même qui, à tout point M d'affixe z non nul, associe le point M' d'affixe z' tel que $z' = -\frac{1}{z}$.

1. Déterminer l'ensemble des points invariants par f.

Soit
$$z \in \mathbb{C}^*$$
, $f(z) = z \Longleftrightarrow -\frac{1}{\overline{z}} = z \Longleftrightarrow z\overline{z} = -1 \Longleftrightarrow |z|^2 = -1$.

Or $|z|^2$ est un réel positif donc l'équation f(z) = z n'a pas de solution.

Donc l'ensemble des points invariants par f est l'ensemble vide.

2. Montrer que $\forall z \in \mathbb{C}^*$, $\overline{z'+1} = \frac{z-1}{z}$ puis que

$$\forall z \in \mathbb{C}^{\times}, |z'+1| = |z'| \iff |z-1| = 1.$$

$$= 1 \qquad z-1$$

$$\forall z \in \mathbb{C}^*, |z'+1| = |z'| \iff |z-1| = 1.$$

Soit $z \in \mathbb{C}^*, \overline{z'+1} = -\frac{1}{\overline{z}} + 1 = -\frac{1}{z} + 1 = \frac{z-1}{z}.$

Soit $z \in \mathbb{C}^*$.

$$|z'+1| = |z'| \iff |\overline{z'+1}| = |z'|$$

$$\iff \left|\frac{z-1}{z}\right| = \left|-\frac{1}{\overline{z}}\right|$$

$$\iff \frac{|z-1|}{|z|} = \frac{1}{|\overline{z}|}$$

$$\iff \frac{|z-1|}{|z|} = \frac{1}{|z|}$$

$$\iff |z-1| = 1$$

Donc
$$\forall z \in \mathbb{C}^*, \overline{z'+1} = \frac{z-1}{z} \text{ et } \forall z \in \mathbb{C}^*, |z'+1| = |z'| \iff |z-1| = 1$$

- 3. Soit M un point d'affixe z non nul et M' d'affixe z' son image par f.
 - (a) Etablir une relation entre OM et OM'.

$$z' = -\frac{1}{\overline{z}} \operatorname{donc} OM' = |z'| = \left| -\frac{1}{\overline{z}} \right| = \frac{1}{|\overline{z}|} = \frac{1}{|z|} = \frac{1}{OM}.$$

Donc
$$OM' = \frac{1}{OM}$$

(b) Déterminer une mesure de l'angle $(\overrightarrow{OM}, \overrightarrow{OM'})$ et en donner une interprétation géométrique.

$$(\overrightarrow{OM}, \overrightarrow{OM'}) \equiv arg\left(\frac{z'}{z}\right)[2\pi] \iff (\overrightarrow{OM}, \overrightarrow{OM'}) \equiv arg\left(-\frac{1}{z\overline{z}}\right)[2\pi]$$

$$\iff (\overrightarrow{OM}, \overrightarrow{OM'}) \equiv arg\left(-\frac{1}{|z|^2}\right)[2\pi]$$

$$\iff (\overrightarrow{OM}, \overrightarrow{OM'}) \equiv \pi[2\pi]$$

Donc les points O, M et M' sont alignés avec $O \in [MM']$.

4. Soit A le point d'affixe 1 et \mathscr{C} le cercle de centre A et de rayon 1. Construire l'image M' par f d'un point M quelconque, distinct de O, appartenant à \mathscr{C} .

$$\begin{split} M \in \mathscr{C} \setminus \{O\} &\iff \left\{ \begin{array}{ccc} M & \neq & O \\ AM & = & 1 \\ \\ &\iff \left\{ \begin{array}{ccc} z & \in & \mathbb{C}^* \\ |z-1| & = & 1 \\ \\ &\iff |z'+1| = |z'| \\ \\ &\iff BM' = OM' \text{ avec } B \text{ le point d'affixe } -1. \end{array} \right. \end{aligned}$$

Donc M' appartient à la médiatrice du segment [BO].

Les points O, M et M' sont alignés avec $M' \in [MO)$.

Ainsi M'est le point d'intersection de la médiatrice du segment [BO]

Faire une figure en plaçant *M* où vous voulez!

EXERCICE 16

On considère A(-1+i) et B(1+4i).

- 1. Soit *R* la rotation de centre *A* et d'angle $-\frac{\pi}{2}$.
 - (a) Déterminer l'écriture complexe de *R*.

Soit $z \in \mathbb{C}$, R a pour écriture complexe $z' = e^{-i\frac{\pi}{2}}(z - z_A) + z_A$, c'est-àdire z' = -i(z+1-i)-1+i=-iz-2.

Donc R a pour écriture complexe z' = -iz - 2

- (b) Déterminer l'affixe du point C, image du point B par la rotation R. $z_C = -iz_B 2 = -i(1+4i) 2 = 2-i$. Donc le point B a pour image C(2-i) par la rotation R.
- 2. On pose $\vec{w} = \frac{1}{2} \overrightarrow{AB}$. Soit *D* l'image du point *C* par la translation *t* de vecteur \vec{w} . Déterminer l'affixe du point *D*.

t a pour écriture complexe $z'=z+z_{\overrightarrow{w}}$ c'est-à-dire $z'=z+\frac{1}{2}(1+4i-(-1+i))=z+1+\frac{3}{2}i$.

Alors
$$z_D = z_C + 1 + \frac{3}{2}i = 2 - i + 1 + \frac{3}{2}i = 3 + \frac{1}{2}i$$
. Ainsi D a pour affixe $3 + \frac{1}{2}i$

3. On considère la transformation T d'écriture complexe $z' = \frac{2}{3}z + \frac{1}{3} + \frac{4}{3}i$.

Déterminer la nature et les éléments caractéristiques de la transformation

T a une écriture complexe de la forme z' = az + b avec $a = \frac{2}{3}$.

Donc $a \in \mathbb{R} \setminus \{1\}$, alors T est une homothétie de rapport $\frac{2}{3}$.

Soit
$$z \in \mathbb{C}$$
, $z' = z \Longleftrightarrow \frac{2}{3}z + \frac{1}{3} + \frac{4}{3}i = z \Longleftrightarrow \frac{1}{3} + \frac{4}{3}i = \frac{1}{3}z \Longleftrightarrow z = 1 + 4i \Longleftrightarrow z = z_B$.

2025-2026

Donc *B* est l'unique point invariant de *T*.

Ainsi T est l'homothétie de rapport $\frac{2}{3}$ et de centre B.

4. On note E l'image du point C par la transformation T. Montrer que les points A, D et E sont alignés.

$$(\overrightarrow{AD}, \overrightarrow{AE}) = \arg\left(\frac{z_E - z_A}{z_D - z_A}\right) [2\pi] = \arg\left(\frac{\frac{5}{3} + \frac{2}{3}i + 1 - i}{3 + \frac{1}{2}i + 1 - i}\right) [2\pi] = \arg\left(\frac{\frac{8}{3} - \frac{1}{3}i}{4 - \frac{1}{3}i}\right) [2\pi] = \arg\left(\frac{\frac{2}{3}\left(4 - \frac{1}{2}i\right)}{4 - \frac{1}{3}i}\right) [2\pi] = \arg\left(\frac{2}{3}\right) [2\pi] = 0[2\pi].$$

Donc les points A, D et E sont alignés