
TD 8

Eléments de correction

EXERCICE 4

1. Soit α ∈
]

−
π

2
;
π

2

[

.

(a) Déterminer la forme exponentielle de
1+ i tanα

1− i tanα
.

1+ i tanα

1− i tanα
=

1+ i sinα

cosα

1− i sinα

cosα

=
cosα+ i sinα

cosα− i sinα
=

e iα

e−iα
= e2iα.

Donc
1+ i tanα

1− i tanα
= e2iα .

(b) Montrer que ∀z ∈C\{−i }, ∀θ ∈R\{π+2kπ,k ∈Z},
1+ i z

1− i z
= e iθ ⇐⇒

z = tan
θ

2
.

Soit z ∈C\{−i } et θ ∈R\{π+2kπ,k ∈Z}.
1+ i z

1− i z
= e iθ ⇐⇒ 1+ i z = e iθ(1− i z)

⇐⇒ i z(e iθ+1) = e iθ−1

⇐⇒ z =
e iθ−1

i (e iθ+1)
car e iθ 6= −1

Or
e iθ−1

e iθ+1
=

e i θ

2

(

e i θ

2 −e−i θ

2

)

e i θ

2

(

e i θ

2 +e−i θ

2

) =
2i sin

(

θ

2

)

2cos
(

θ

2

) = i tan
(

θ

2

)

.

Donc
1+ i z

1− i z
= e iθ ⇐⇒ z = tan

(

θ

2

)

.

Donc ∀z ∈C\{−i }, ∀θ ∈R\{π+2kπ,k ∈Z},
1+ i z

1− i z
= e iθ ⇐⇒ z = tan

θ

2
.

(c) Déduire des questions précédentes la résolution dans C de l’équation

(Eα) :
(1+ i z

1− i z

)3
=

1+ i tanα

1− i tanα
, d’inconnue α.

Soit D l’ensemble de définition de Eα et z ∈C.

z ∈D ⇐⇒ 1− i z = 0 ⇐⇒ 1− i z 6= 0 ⇐⇒ i z 6= 1 ⇐⇒ z 6= −i .

Donc D =C\{−i }.

Soit z ∈ C\{−i },
(1+ i z

1− i z

)3
=

1+ i tanα

1− i tanα
⇐⇒

(1+ i z

1− i z

)3
= e2iα d’après la

question 1)a.

Les solutions de (Eα) sont donc les nombres complexes z tels que
1+ i z

1− i z
est une racine cubique de e2iα.

Donc (Eα) ⇐⇒
1+ i z

1− i z
= e i 2α+2lπ

3 , l ∈ �0;2�.

Soit l ∈ �0;2�. On pose θl =
2α+2lπ

3
.

Vérifions que θl ∈R\{π+2kπ,k ∈Z} pour utiliser la question 1)b.

−
π

2
<α<

π

2
donc

−π+2lπ

3
< θl <

π+2lπ

3
.

• −
π

3
< θ0 <

π

3
donc ∀k ∈Z,θ0 6=π+2kπ.

•
π

3
< θ1 <π donc ∀k ∈Z,θ1 6=π+2kπ.

• π< θ2 <
5π

3
donc ∀k ∈Z,θ2 6=π+2kπ.

Donc ∀l ∈ �0;2�,θl ∈R\{π+2kπ,k ∈Z}.

Donc d’après la question 1)b, (Eα) ⇐⇒ z = tan
α+ lπ

3
, l ∈ �0;2�.

D’où S =
{

tan
α

3
;tan

α+π

3
;tan

α+2π

3

}

.
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2. Montrer que l’équation
(1+ i z

1− i z

)3
=

1+ i

1− i
a pour ensemble de solutions

S = {−1;2−
p

3;2+
p

3}.
(1+ i z

1− i z

)3
=

1+ i

1− i
⇐⇒

(1+ i z

1− i z

)3
= i

⇐⇒ 1+3i z −3z2 − i z3 = i (1−3i z −3z2 + i z3)

⇐⇒ 1− i −3(1− i )z −3(1− i )z2 + (1− i )z3 = 0

⇐⇒ (1− i )(1−3z −3z2 + z3) = 0

⇐⇒ 1−3z −3z2 + z3 = 0

⇐⇒ (z +1)(z2 −4z +1) = 0

⇐⇒ z +1 = 0 ou z2 −4z +1 = 0

⇐⇒ z =−1 ou z = 2−
p

3 ou z = 2+
p

3

.

Donc S =
{

−1;2−
p

3;2+
p

3
}

.

3. Déduire la valeur exacte de tan
π

12
.

(1+ i z

1− i z

)3
=

1+ i

1− i
⇐⇒

(

E π

4

)

donc

{

−1;2−
p

3;2+
p

3
}

=
{

tan
π

12
;tan

5π

12
;tan

3π

4

}

.

Or tan
3π

4
=−1 donc tan

π

12
= 2−

p
3 ou 2+

p
3.

De plus, −
π

2
<

π

12
<

5π

2
<

π

2
et la fonction tangente est strictement

croissante sur
]

−
π

2
;
π

2

[

donc tan
π

12
< tan

5π

12
.

Or 2−
p

3 < 2+
p

3 donc tan
π

12
= 2−

p
3 .

EXERCICE 9

Les propositions suivantes sont-elles vraies ou fausses? Justifier à l’aide

d’une démonstration ou d’un contre-exemple (suite définie de manière

explicite).

1. Une suite croissante à partir d’un certain rang est minorée.

Ceci est vrai. Démontrons-le.

Soit (un) une suite réelle. Supposons que (un) est croissante à partir d’un

certain rang.

Alors ∃n0 ∈N/∀n ∈N, (n ≥ n0 =⇒ un ≥ un0 ).

Posons m = min
{

u0,u1,u2, · · · ,un0−1,un0

}

. Alors m ∈ R et ∀n ∈ N,un ≥ m.

Donc la suite (un) est minorée.

Ainsi une suite croissante à partir d’un certain rang est minorée.

2. Une suite convergente est nécessairement monotone à partir d’un certain

rang.

Ceci est faux. Contre-exemple :

Considérons la suite (un) définie par ∀n ∈N,un =
(−1)n

n
.

Alors (un) converge vers 0 (cela se montre avec le théorème des

gendarmes!) et pourtant (un) n’est pas monotone .

3. Une suite divergeant vers +∞ est nécessairement croissante à partir d’un

certain rang.

Ceci est faux. Contre-exemple :

Considérons la suite (un) définie par ∀n ∈N,un = n2 + (−1)n .

Alors (un) diverge vers +∞ (cela se montre avec le théorème de divergence

par minoration) et pourtant elle n’est pas monotone, donc elle n’est pas

croissante à partir d’un certain rang.
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4. Si (vn) est croissante et si ∀n ∈N,un ≥ vn , alors (un) est croissante.

Ceci est faux. Contre-exemple :

Considérons la suite (un) définie par ∀n ∈N,un =
1

n
et (vn) la suite définie

par ∀n ∈N, vn =−
1

n
.

Alors (vn) est croissante et ∀n ∈N,un ≥ vn .

Mais (un) est décroissante, donc elle n’est pas croissante.

5. Si (|un |) converge, alors (un) converge aussi.

Ceci est faux. Contre-exemple :

Considérons la suite (un) définie par ∀n ∈N,un = (−1)n .

Alors (|un |) converge vers 1 et pourtant (un) diverge et donc ne

converge pas.

6. Si (|un |) converge vers 0, alors (un) converge aussi vers 0.

Ceci est vrai. Démontrons-le.

Soit (un) une suite. Supposons que (|un |) converge vers 0.

Alors ∀ǫ> 0,∃nǫ ∈N/(n ≥ nǫ =⇒ ||un || ≤ ǫ).

Ceci est équivalent à : ∀ǫ> 0,∃nǫ ∈N/(n ≥ nǫ =⇒ |un | ≤ ǫ).

Donc (un) converge vers 0.

Ainsi Si (|un |) converge vers 0, alors (un) converge aussi vers 0.

EXERCICE 11

On considère la suite (un) définie par











u0 = 1

∀n ∈N,un+1 =
un

√

5−u2
n

.

1. Montrer que ∀n ∈N,0 < un ≤ 2 puis étudier la convergence de la suite (un).

∀n ∈N,un+1 = f (un) avec f : x 7→
x

p
5−x2

définie sur [0;2].

f est dérivable sur [0;2] comme quotient de telles fonctions et ∀x ∈
[0;2], f ′(x) =

5
(

5−x2
)
p

5−x2
.

∀x ∈ [0;2], f ′(x) > 0 donc f est strictement croissante sur [0;2].

Montrons par récurrence que ∀n ∈N,0 < un ≤ 2.

(*) Initialisation : u0 = 1, alors u0 ∈ [0;2], donc la propriété est vraie au rang

0.

(*) Hérédité : Soit n ∈N, on suppose que la propriété est vraie au rang n.

Par hypothèse de récurrence, 0 < un ≤ 2 et f est strictement croissante sur

[0;2] donc f (0) < f (un) ≤ f (2).

Or f (0) = 0 et f (2) = 2, donc 0 < un+1 ≤ 2. Donc la propriété est vraie au

rang n +1.

(*) Conclusion : La propriété est initialisée au rang 0 et héréditaire donc

∀n ∈N,0 < un ≤ 2 .

Convergence de la suite (un).

(1) Sens de variation :

–> f est strictement croissante sur [0;2] et ∀n ∈N,0 < un ≤ 2, donc la suite

(un) est monotone.

–> u0 = 1 et u1 = f (u0) =
1

2
, donc u0 ≥ u1.

Ainsi la suite (un) est décroissante .

(2) Convergence :

(un) est décroissante et minorée par 0 , donc (un) est convergente.

Soit ℓ sa limite.

∀n ∈N,0 < un ≤ 2, alors 0 ≤ ℓ≤ 2.

Or f est continue sur [ 0;2 ], donc en ℓ, alors ℓ vérifie f (ℓ) = ℓ.

f (ℓ) = ℓ⇐⇒
ℓ

p
5−ℓ2

= ℓ⇐⇒ ℓ
2 = ℓ

2(5−ℓ
2) ⇐⇒ ℓ

2
(

ℓ
2 −4

)

= 0 ⇐⇒

ℓ= 0 ou ℓ=−2 ou ℓ= 2.

Or 0 ≤ ℓ≤ 2, donc ℓ 6= −2. De plus ( un ) est décroissante, donc

∀n ∈N,un ≤ u0, alors par passage à la limite ℓ≤ 1.

Donc f (ℓ) = ℓ⇐⇒ ℓ= 0. Ainsi la suite (un) est converge et a pour limite 0 .
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2. (a) Pour tout n ∈ N, on pose vn = u2
n . Calculer v0 et expliciter la relation

de récurrence vérifiée par la suite (vn).

v0 = u2
0 = 1. Donc v0 = 1 .

Soit n ∈N, vn+1 = u2
n+1 =

u2
n

5−u2
n

=
vn

5− vn
.

(vn) vérifie donc la relation de récurrence : ∀n ∈N, vn+1 =
vn

5− vn
.

(b) Pour tout n ∈N, on pose wn =
1

vn
. Justifier que la suite (wn) est bien

définie et montrer que ∀n ∈N, wn+1 = 5wn −1.

Déterminer le terme général de la suite (wn).

∀n ∈N,un > 0 et vn = u2
n donc ∀n ∈N, vn 6= 0.

Ainsi (wn) est bien définie.

Soit n ∈N, wn+1 =
1

vn+1
=

5− vn

vn
=

5

vn
−1 = 5wn −1.

Donc ∀n ∈N, wn+1 = 5wn −1 et w0 =
1

v0
= 1.

(wn) est une suite arithmético-géométrique.

On résout d’abord l’équation x = 5x −1, on trouve x =
1

4
.

Considérons la suite (tn) définie par ∀n ∈N, tn = wn −
1

4
.

Montrons que (tn) est une suite géométrique de raison 5.

Soit n ∈N, tn+1 = wn+1−
1

4
= 5wn −1−

1

4
= 5wn −

5

4
= 5

(

wn −
1

4

)

= 5tn .

La suite (tn) est donc géométrique de raison 5 et de premier terme

t0 = w0 −
1

4
=

3

4
. Donc ∀n ∈N, tn = t0 ×5n =

3

4
×5n .

Or ∀n ∈N, tn = wn −
1

4
donc ∀n ∈N, wn = tn +

1

4
.

Ainsi ∀n ∈N, wn =
3

4
×5n +

1

4
.

(c) Déduire des questions précédentes le terme général de la suite (un) et

conclure sur la convergence de la suite (un).

∀n ∈N, vn =
1

wn
donc ∀n ∈N, vn =

4

3×5n +1
.

De plus, ∀n ∈N, vn = u2
n et un > 0 donc ∀n ∈N,un =

p
vn .

Ainsi ∀n ∈N,un =
2

p
3×5n +1

.

5 > 1 donc lim
n→+∞

5n =+∞. De plus, 3 > 0 donc lim
n→+∞

(

3×5n +1
)

=+∞.

Alors lim
n→+∞

un = 0. Donc la suite (un) est convergente vers 0 .

EXERCICE 14

Les questions 1 à 3 sont indépendantes.

1. Soit (xn) et (yn) deux suites réelles telles que ∀n ∈ N, xn+1 =
1

2
(xn − yn) et

yn+1 =
1

2
(xn + yn).

Etudier la convergence de la suite complexe (zn) où ∀n ∈N, zn = xn + i yn ,

puis celle des suites (xn) et (yn).

Soit n ∈N.
zn+1 = xn+1 + i yn+1

=
1

2
(xn − yn)+ i

1

2
(xn + yn)

=
1

2
(1+ i )xn +

1

2
(−1+ i )yn

=
1

2
(1+ i )xn +

1

2
i (1+ i )yn

=
1

2
(1+ i )(xn + i yn)

=
1

2
(1+ i )zn

Donc (zn) est une suite géométrique de raison
1

2
(1+ i ).

Or
∣

∣

∣

1

2
(1+ i )

∣

∣

∣=
p

2

2
< 1 donc la suite (|zn |) converge vers 0.

Ainsi la suite (zn) converge vers 0 et les suites (Re(zn)) et (Im(zn))

convergent également vers 0.
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Donc les suites (zn), (xn) et (yn) convergent vers 0 .

2. Etudier la convergence de la suite (zn) définie par z0 ∈C et

∀n ∈N, zn+1 =
i

2
zn +1.

La suite (zn) est une suite arithmético-géométrique.

z =
i

2
z +1 ⇐⇒

(

1−
i

2

)

z = 1 ⇐⇒ z =
2

2− i
⇐⇒ z =

2(2+ i )

5
.

On considère la suite (un) définie par ∀n ∈N,un = zn −
2(2+ i )

5
.

Soit n ∈N,un+1 = ·· · =
1

2
i un (Calculs à détailler !)

Donc la suite (un) est géométrique de raison
1

2
i . Or

∣

∣

∣

1

2
i
∣

∣

∣ =
1

2
< 1 donc la

suite (|un |) converge vers 0. Alors la suite (un) converge vers 0.

∀n ∈N, zn = un +
2(2+ i )

5
donc la suite (zn) converge vers

2(2+ i )

5
.

3. Soit (un) et (vn) deux suites réelles telles que lim
n→+∞

(u2
n +un vn + v2

n) = 0.

En considérant la suite de terme général zn = un− j vn où j = e
2iπ

3 , montrer

que les suites (un) et (vn) convergent vers 0.

Soit (zn) la suite définie par ∀n ∈N, zn = un − j vn où j = e
2iπ

3 .

Soit n ∈N, zn = un −
(

−
1

2
+ i

p
3

2

)

vn = un +
1

2
vn − i

p
3

2
vn .

Calculons |zn | afin de faire apparaître u2
n et v2

n .

|zn |2 =
(

un +
1

2
vn

)2
+

3

4
v2

n = u2
n +un vn + v2

n .

Or par hypothèse, lim
n→+∞

(u2
n +un vn + v2

n) = 0 donc lim
n→+∞

|zn |2 = 0.

Alors la suite (|zn |) converge vers 0.

Donc la suite (zn) converge vers 0 et les suites (Re(zn)) et (Im(zn))

convergent également vers 0.

D’où lim
n→+∞

(

un +
1

2
vn

)

= 0 et lim
n→+∞

p
3

2
vn = 0.

Ainsi lim
n→+∞

vn = 0 et lim
n→+∞

un = 0 .
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