Prépa YAUBAN PTSI P1/1

Bras de robot affuteur: Cinématique du point

Colle	2.3
1h	

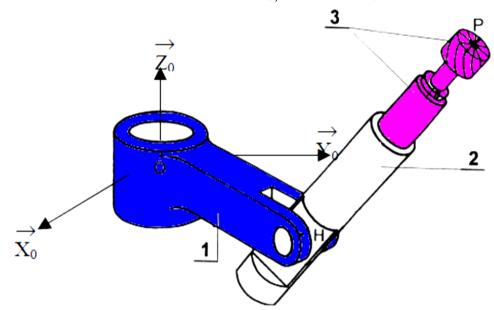
Ch2

Cinématique des systèmes

Compétences visées :

- Réaliser un schéma cinématique plan ou 3D

	- Déterminer analy	lytiquement un	vecteur vitesse o	u accélératior
--	--------------------	----------------	-------------------	----------------


Mise en situation :

Le système étudié est un bras de robot affuteur (présenté ici en version light)

Il est constitué : -d'une tourelle 1, en rotation / au bâti 0

-d'un guide 2, en rotation / à la tourelle 1

-d'un ensemble broche-outil 3, en translation / à 2

Repérage :

Soit $R_0(0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ un repère lié au bâti **0**

Soit $R_1(0, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$ un repère lié à la tourelle $\underline{\mathbf{1}}$ tel que l'axe $(0, \overrightarrow{z_0})$ soit confondu avec l'axe de la liaison $\underline{\mathbf{0/1}}$ Soit $R_2(H, \overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2})$ un repère lié au guide $\underline{\mathbf{2}}$ tel que l'axe $(H, \overrightarrow{y_1})$ soit confondu avec l'axe de la liaison $\underline{\mathbf{1/2}}$

 $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$ définit la position angulaire de la tourelle $\underline{\mathbf{1}}$ par rapport à $\underline{\mathbf{0}}$

 $\alpha = (\overrightarrow{x_1}, \overrightarrow{x_2})$ définit la position angulaire du guide **2** par rapport à **1**,

On note : $\overrightarrow{OH} = L.\overrightarrow{x_1}$ $\overrightarrow{HP} = \lambda(t).\overrightarrow{z_2}$

Questions:

Q1: Réaliser le schéma cinématique du système.

Q2: Etablir les figures planes illustrant les 2 paramètres d'orientations.

Q3: Dans le but de repérer la position du point P dans le repère R₀, exprimer simplement le vecteur position de P

Q4: Calculer $\overrightarrow{V_{P3/0}}$.

Q5: Calculer $\overrightarrow{a_{P3/0}}$ en prenant $\dot{\alpha} = constante$

Q6: Projeter le vecteur position dans la base R_0 .