
Prépa Vi	AUBAN
PTSI	DR1

Cahier réponse DS3

DS	SI
DS3	4h

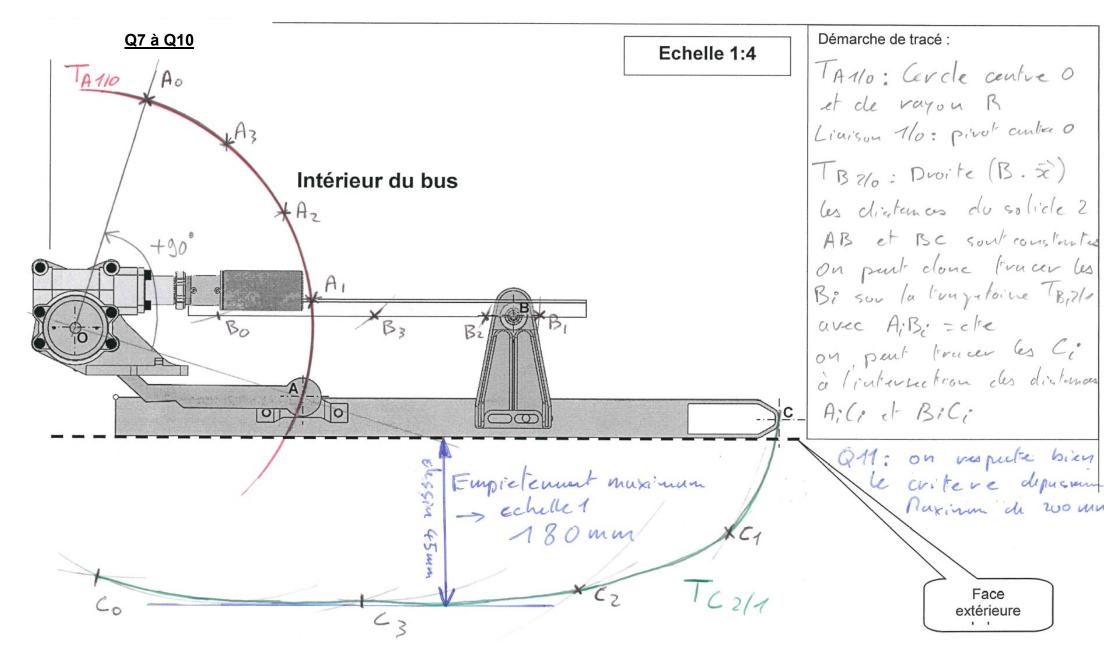
Q3:
$$\overrightarrow{OO} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BO} = R.\overrightarrow{x_1} - L.\overrightarrow{y_2} - \lambda.\overrightarrow{x} - e.\overrightarrow{y} = \overrightarrow{o}$$

Q4:
$$\overrightarrow{x_1} = \cos\theta \cdot \vec{x} + \sin\theta \cdot \vec{y}$$
 et $\overrightarrow{y_2} = -\sin\alpha \cdot \vec{x} + \cos\alpha \cdot \vec{y}$

En projection sur \vec{x} : $R.\cos\theta + L.\sin\alpha - \lambda = 0$ (1)

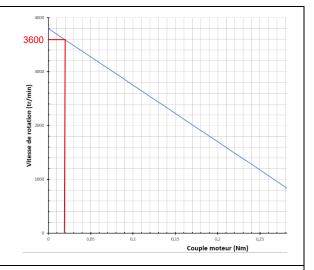
En projection sur \vec{y} : $R.\sin\theta - L.\cos\alpha - e = 0$ (2)

(2)
$$\rightarrow L.\cos\alpha = R.\sin\theta - e$$


$$\cos\alpha = \frac{R.\sin\theta - e}{L}$$

$$\alpha = \arccos\left(\frac{R.\sin\theta - e}{L}\right)$$

Q6: (1)
$$\rightarrow$$
: $\lambda = R.\cos\theta + L.\sin\alpha$


$$\lambda = R.\cos\theta + L.\sin\left(\arccos\left(\frac{R.\sin\theta - e}{L}\right)\right)$$

Prépa VI	AUBAN	Cahier réponse DS3	DS SI	
PTSI	DR2		DS3	4h

Q11:

Le couple moteur est de 2Ncm, soit 0,02Nm Grâce à la courbe, on trouve ω_m =3600 tr/min

Q12: Sortie 6 Entrée 3

Q13:

Satellite: 5 PS: 6 Planétaires: 3 et 4 Méthode willis: $\frac{\omega_{3/6}}{\omega_{4/6}} = (-1)^1 \frac{Z_4 \cdot Z_5}{Z_5 \cdot Z_3} = -\frac{Z_4}{Z_3} = \lambda$ Satellite: 5

On revient au système réel: $\frac{\omega_{3/6}}{\omega_{4/6}} = \frac{\omega_{3/1} - \omega_{6/1}}{\omega_{4/1} - \omega_{6/1}} = \lambda$ et $\omega_{4/1} = 0$ $\omega_{3/1} - \omega_{6/1} = -\omega_{6/1} \cdot \lambda$

$$K_E = \frac{\omega_{6/1}}{\omega_{3/1}} = \frac{1}{1-\lambda} = \frac{1}{1+\frac{Z_4}{Z_3}} = \frac{Z_3}{Z_4+Z_3} = \frac{10}{10+30} = \frac{1}{4}$$

$$K_E = \frac{1}{4}$$

Q14:

On a 2 étages du même rapport de réduction, on a donc :

$$K_{RED} = (K_E)^2 = \frac{1}{16}$$

Q15:

Le rapport de réduction du système roue et vis sans fin est donné par la formule : $K_{RV} = \frac{Nbfilet}{Zcouronne} = \frac{1}{38}$

$$K_{RV} = \frac{Nbfilet}{Zcouronne} = \frac{1}{38}$$

Q16:

Calcul du rapport global réducteur à 2 étages + système roue/vis (moteur en entrée, bras en sortie) :

$$K = \frac{\omega_{bras/0}}{\omega_{mot/0}} = K_{RED}. K_{RV} = \frac{1}{16x38} = \frac{1}{608}$$

Q17:

$$\overline{\omega_{bras/0}} = \omega_{mot/0} \cdot K = \frac{3600.2.\pi}{60} \cdot \frac{1}{608}$$

$$\omega_{1/0} = 0.62 \, rd/s$$

Q18:

MCUV

CI: CF:
$$\dot{a} t = t1$$

 $\theta_1(0) = 0$ $\theta_1(t1) = ?$

$$\omega_1(0) = 0$$
 $\omega_1(t1) = 0,6 \text{rad/s}$

$$\alpha_1$$
 (0) = α_1 (t1) = 3 rad/s²

$$\omega(t) = \alpha_1 \times t + \omega_1(0) = \alpha_1 \times t$$

à
$$t = t1$$
 $\omega(t1) = 0.6 = 3 \times t1 \Rightarrow t1 = 0.6/3 = 0.2s$

Determination de l'angle de rotation $\theta_1(t1)$ par l'équation de mouvement :

$$\theta(t) = 0.5 \times \alpha_1 \times t^2 + \omega_1(0) \times t + \theta_1(0) = 0.5 \times \alpha \times t^2$$

$$\theta(t1) = 0.5 \times 3 \times 0.2^2 = 0.06 \text{ rad}$$

Determination de l'angle de rotation $\theta_1(t1)$ par la méthode des aires :

L'aire sous la courbe des vitesses pendant la durée t1 vaut θ_1 : $\theta_1 = \frac{\omega_{max}.t_1}{2} = \frac{0.6 \times 0.2}{2} = 0.06 \ rad$

Q19:

MCUV

$$\begin{array}{ll} \text{CI:} & \text{CF: à t = t3} \\ \theta_3(0) = 0 & \theta_3 \text{ (t3) = 0,04rad} \\ \omega_3 \text{ (0) = 0,6rad/s} & \omega_3(\text{t3) = 0rad/s} \\ & \alpha_3 \text{ (0) = } \alpha_3 \text{ (t3) = ?} \end{array}$$

Determination de t3 par les équations de mouvement :

$$\omega_3$$
 (t) = $\alpha_3 \times t + \omega_3$ (0) = $\alpha_3 \times t + 0.6$
à t = t3 ω_3 (t3) = 0 = $\alpha_3 \times t3 + 0.6 \Rightarrow \alpha_3 = -0.6/t3$
 ω_3 (t) = $0.5 \times \alpha_3 \times t^2 + \omega_3$ (0) \times t + ω_3 (0) = $0.5 \times \alpha_3 \times t3^2 + 0.6 \times t3 = 0.5 \times (-0.6)$

$$\theta_3$$
 (t) = 0,5× α_3 ×t²+ ω_3 (0)×t+ θ_3 (0) = 0,5× α_3 ×t3²+0,6×t3=0,5×(-0,6/t3)×t3²+0,6×t3=0,3×t3=0,04 t3=0,04/0,3≈0,13s

Determination de l'angle de rotation $\theta_1(t1)$ par la méthode des aires :

L'aire sous la courbe des vitesses pendant la durée t_3 vaut θ_3 :

$$\theta_{3} = \frac{\omega_{max} \times t3}{2} \quad \text{d'où } t_{3} = \frac{2 \times \theta_{3}}{\omega_{max}} = \frac{2 \times 0.04}{0.6} = \frac{0.8}{6} \approx 0.13s$$

$$\boxed{\textbf{Q20:}} \quad \theta_{T} = \theta_{1} + \theta_{2} + \theta_{3} = 1.5rd$$

Q20:
$$\theta_T = \theta_1 + \theta_2 + \theta_3 = 1.5rd$$

$$\theta_2 = 1.5 - \theta_1 - \theta_3 = 1.5 - 0.06 - 0.04 = 1.4 \ rd$$

L'aire sous la courbe des vitesses pendant la durée t2 vaut θ_2 :

$$\theta_2 = \omega_{max}. t2$$
 d'où $t2 = \frac{\theta_2}{\omega_{max}} = \frac{1.4}{0.6} = \frac{14}{6} \approx 2.33s$

Q21:

Soit T la durée totale d'ouverture :

$$T = t1 + t2 + t3 = 0.2 + 2.33 + 0.13 = 2.66s$$

L'exigence de 3 secondes maxi est bien respectée.

Prépa Vi	AUBAN
PTSI	DR 5

Cahier réponse DS3

DS SI		
DS3	4h	

Q22:

Entre 1 et 0 il y a une liaison pivot d'axe $(0, \vec{z})$ donc $\{V_{1/0}\} = \begin{cases} \dot{\theta} \cdot \vec{z} \\ \vec{0} \end{cases}$

Entre 2 et 1 il y a une liaison pivot d'axe (A, \vec{z}) donc

$$\{V_{2/1}\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{2/1}} \\ \overrightarrow{0} \end{array} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{2/0}} - \overrightarrow{\Omega_{1/0}} \\ \overrightarrow{0} \end{array} \right\} = \left\{ \begin{array}{c} (\dot{\alpha} - \dot{\theta}) \cdot \vec{z} \\ \overrightarrow{0} \end{array} \right\}$$

Entre 2 et 0 il y a une liaison ponctuelle de normale (B, \vec{y}) donc $\{V_{2/0}\} = \begin{cases} \dot{\alpha}.\vec{z} \\ \dot{\lambda}.\vec{x} \end{cases}$ (dans un mouvement plan xy)

Q23: Le point de plus simple pour exprimer les torseurs est ici le point A

$$\begin{aligned} \left\{ V_{2/0} \right\}_A &= \left\{ V_{2/1} \right\}_A + \left\{ V_{1/0} \right\}_A \end{aligned} \qquad \text{calcul de } \overrightarrow{V_{(A,1/0)}} = \overrightarrow{V_{(O,1/0)}} + \overrightarrow{AO} \wedge \dot{\theta}. \vec{z} = R. \dot{\theta}. \overrightarrow{y_1} \\ \text{calcul de } \overrightarrow{V_{(A,2/0)}} = \overrightarrow{V_{(B,2/0)}} + \overrightarrow{AB} \wedge \dot{\alpha}. \vec{z} = \dot{\lambda}. \vec{x} - L. \dot{\alpha}. \overrightarrow{x_2} \end{aligned}$$

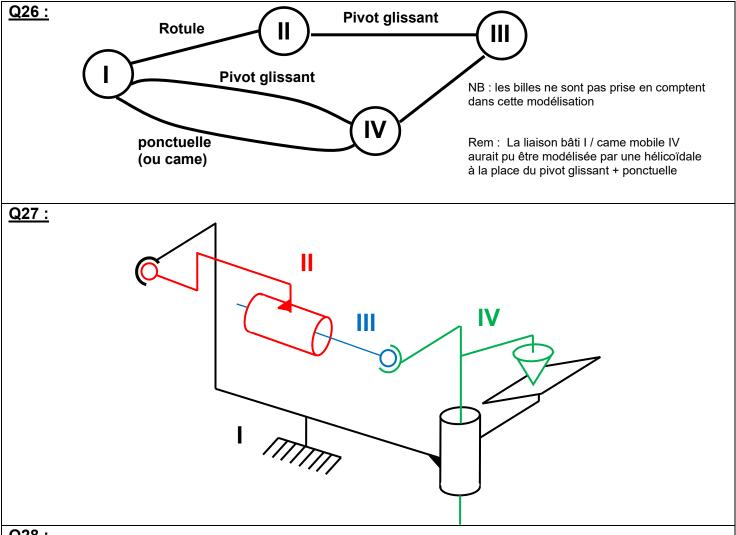
L'équation des compositions des vitesses de rotation donne en projection sur \vec{z} : $\dot{\alpha} = \dot{\alpha}$ Super!

L'équation des compositions des vitesses en A donne : $\dot{\lambda} \cdot \vec{x} - L \cdot \dot{\alpha} \cdot \overrightarrow{x_2} = R \cdot \dot{\theta} \cdot \overrightarrow{y_1}$

Q24:

$$\dot{\lambda}.\vec{x} - L.\dot{\alpha}.\overrightarrow{x_2} = R.\dot{\theta}.\overrightarrow{y_1} \qquad et \qquad \overrightarrow{y_1} = -sin\theta.\vec{x} + cos\theta.\vec{y} \quad et \qquad \overrightarrow{x_2} = cos\alpha.\vec{x} + sin\alpha.\vec{y}$$

En projection sur \vec{x} : $\dot{\lambda} - L. \dot{\alpha}. \cos \alpha = -R. \dot{\theta}. \sin \theta$ (3)


En projection sur \vec{y} : $-L.\dot{\alpha}.\sin\alpha = R.\dot{\theta}.\cos\theta$ (4)

<u>Q25 :</u>

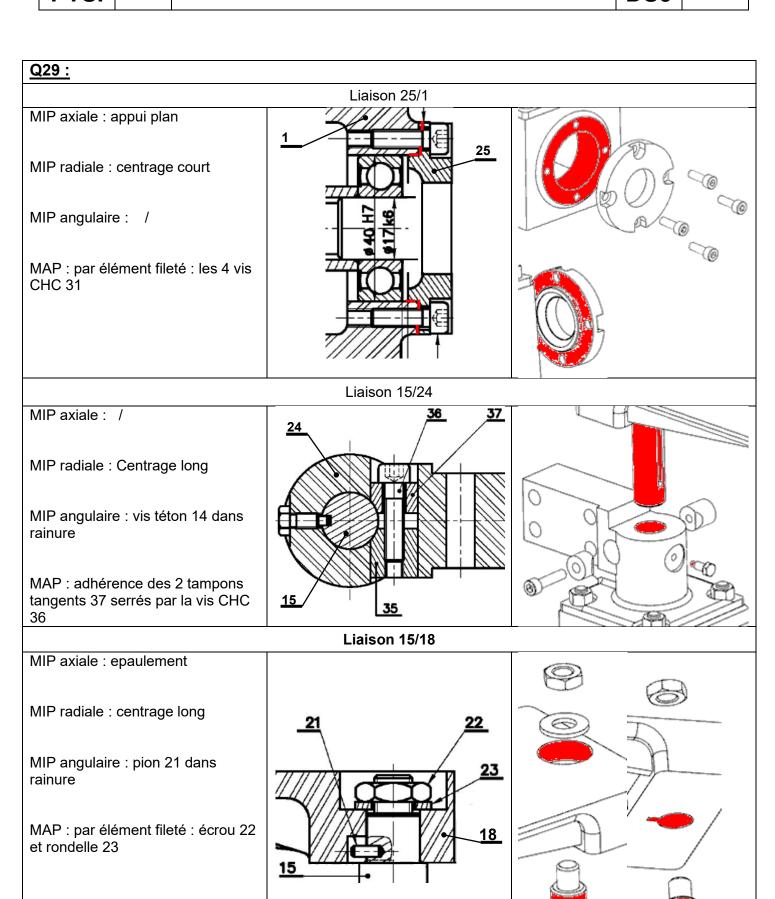
(3)
$$\rightarrow \dot{\lambda} = L.\dot{\alpha}.\cos{\alpha} - R.\dot{\theta}.\sin{\theta}$$

$$\dot{\alpha} = -\frac{\frac{R.\dot{\theta}.\cos\theta}{L.\sin\alpha}}{\dot{\lambda} = -\frac{R.\dot{\theta}.\cos\theta}{\tan\alpha} - R.\dot{\theta}.\sin\theta}$$

Prépa VI	AUBAN	Cahier réponse DS3	DS	DS SI	
PTSI	DR6		DS3	4h	

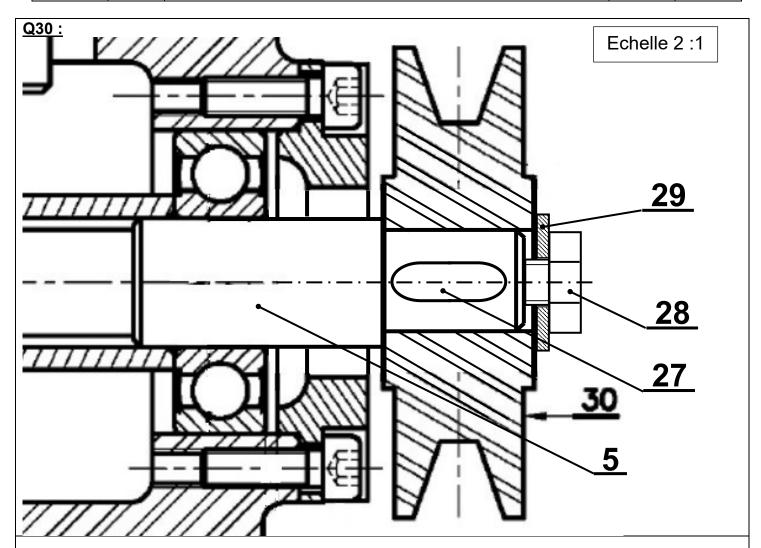
Q28:

Lors de la coupure de l'alimentation en air du vérin, le ressort 14 se détend et donc le vérin s'allonge.


La came 8a est mise en rotation, ce qui provoque la montée de celle-ci ainsi que de l'insert levier 36 et de l'axe de blocage 35 (le groupe IV)

Les billes 43 rentrent dans l'axe 1 (car l'axe 35 ne les empêche plus de le faire) et ces billes n'assurent plus l'entrainement en rotation de l'axe 1 par la couronne 37

Ρι έρα V	AUBAN
DTQI	DP7


Cahier réponse DS3

DS	SI
DS3	4h

Préρα VAUBANPTSIDR8

Cahier réponse DS3DS SIDS34h

33	2	Roulement à billes à contact radial
32	1	Entretoise
31	4	Vis CHc M5-16
30	1	Poulie Trapézoïdale
29	1	Rondelle M6
28	1	Vis H M6-15
27	1	Clavette parallèle, forme A, 5x5x13
26	1	Entretoise
25	1	Chapeau centré
24	1	Carter supérieur
23	1	Rondelle M10