PTSI 1. Interrogation orale de Sciences Physiques n°12. Semaine du 8/1 au 12/1.

Signaux physiques "SP1 Propagation d'un signal." COURS UNIQUEMENT.

<u>Intro</u>: Cuve à ondes: l'amplitude est fonction à la fois de x et de t.

- différents types d'ondes : élastiques/sonores/électromagnétiques.

Différences ondes transversales/longitudinales;

- Expression d'une onde progressive dans un milieu non dispersif s(x,t) = f(t-x/c) = F(x-ct) dans le sens >0, s(x,t) = g(t+x/c) = G(x+ct) sens <0.
- Onde progressive sinusoïdale. Pour une onde suivant les x > 0:

$$s(x,t) = f_0 \cos \left[\omega \left(t - \frac{x}{c}\right)\right] = f_0 \cos(\omega t - kx)$$

Définition du vecteur d'onde et de la longueur d'onde.

"SP2 Phénomènes d'interférence." COURS UNIQUEMENT (début)

- Interférence entre deux ondes acoustiques ou mécaniques:

Somme de deux ondes se propageant dans le même sens, de même pulsation et de <u>même amplitude</u> en un point fixe de l'espace. Expression du déphasage entre les deux signaux en fonction des deux distances aux sources d_1 et d_2 . Conditions d'interférence destructives ou constructives. Expression de l'interfrange dans le cas simplifié : écran à grande distance.

Pour deux ondes d'amplitude différente, la formule des interférences doit être donnée (voir programme), elle n'a donc pas été démontrée : $A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_1 - \varphi_2)$

On n'a pas encore fait : Interférence entre deux ondes lumineuses, cas des trous d'Young:

Signaux électriques

"SE6 Filtrage linéaire" Exercices

<u>Capacité numérique</u>: Action d'un filtre passe-bas et passe-haut du premier ordre sur un signal carré. Expliquer ce que fait le programme.

Constitution de la matière (chimie)

"CM1 Atomes, molécules. Classification périodique." Cours et exercices

- Constitution d'un atome, définition d'un élément chimique.
- Configuration électronique d'un atome dans son état fondamental : nombres quantiques n (couches) et ℓ (sous-couches s et p). Electrons de valence et de coeur.
- Principe de construction de la classification périodique, familles chimiques (alcalins, alcalino-terreux, halogènes, gaz rares). Métaux/non-métaux.
- Electronégativité : Définition et évolution générale au sein de la classification.
- Structure de Lewis : Liaison covalente (ordre de grandeur de la liaison et de l'énergie de liaison). Doublet liant et non liant. Liaisons multiples.
- Règle du duet (H_2), de l'octet (H_2 O, CH_4 , NH_3 , HF, HCl, PCl₃). Hypervalence (PCl_5 , SO_2 , SF_6 , SO_4 2 -), lacune électronique (BeH_2 , $AlCl_3$), liaison dative (CO, NH_4 ⁺). Autres exemples du cours : NO, NO_2 ⁻.
- Géométrie (théorie VSEPR) : composés de type AX_mE_n pour $m+n \le 6$ (A atome central, m nb d'atomes X auquel A est lié, n nb de doublets non liants ou d'électrons célibataires). BeH₂, AlCl₃, SO₂, CH₄, NH₃, H₂O, PCl₅, SF₆.
- Polarité des molécules.

"CM2 Forces intermoléculaires. Solvants" Cours et applications directes

- Polarisabilité des molécules. Interactions de Van Der Waals, liaison hydrogène.
- Evolution de la température de fusion sur la colonne des halogènes.
- Description de la dissolution de HCl dans l'eau. Caractéristiques des solvants : polaires, dispersants, protiques.

Travaux pratiques

<u>TP d'électricité</u>: Etude d'un circuit RLC série en régime sinusoïdal sortie sur R ou C : tracé de H en fonction de la fréquence.

TP de chimie. La classification périodique

- Action du sodium sur l'eau.
- Combustion du carbone et du magnésium dans le dioxygène pur.

Bonnes vacances à tous, et joyeuses fêtes de fin d'année!