Résumé de cours Transformation de la matière TM2 Cinétique chimique

<u>Hypothèse</u>: systèmes isochores monophasés. réaction totale sens (1) (direct).

 $\alpha_i A_i = \alpha_i' A_i'$

- pour les réactifs, + pour les produits, on divise par le coefficient stœchiométrique)

Une réaction <u>admet un ordre</u> si sa loi expérimentale de vitesse peut se mettre sous la forme : $v = k \prod_{i=1}^{n} [A_i]^{p_i}$

constante de vitesse, ne dépend que de la température T.

ordre partiel par rapport au constituant A_i. Entier ou rationnel ≥ 0 ; $p = \sum_{i} p_{i}$: ordre global de la réaction. p_i:

Une réaction suit la loi de Van't Hoff lorsque les ordres partiels sont égaux aux coefficients stœchiométriques dans

l'expression de la vitesse. La réaction est dite aussi d'<u>ordre simple</u>. $v = k \prod [A_i]^{\alpha_i}$

$$\frac{\text{Exemple}: \text{H}_{2(g)} + \text{I}_{2(g)} \rightarrow 2 \text{ HI}_{(g)}}{\text{Exemple}: \text{H}_{2(g)} + \text{I}_{2(g)} \rightarrow 2 \text{ HI}_{(g)}} \quad v = -\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = +\frac{1}{2}\frac{d[HI]}{dt}$$
La réaction suit la loi de Van't Hoff: $v = k[H_2][I_2]$

Loi cinétique : concentration du réactif A en fonction du temps.

Méthode intégrale : on cherche à tracer une droite pour vérifier l'ordre de la réaction.

<u>Temps de demi-réaction</u> $t_{1/2}$ tel que $[A](t_{1/2}) = \frac{a_0}{2}$

Ordre de la réaction	méthode intégrale (faire les démo)	méthode des temps de demi-réaction (démo)
Ordre 0	[A] linéaire en fonction du temps	t _{1/2} linéaire en fonction de [A] ₀
V = k		
Ordre 1	Ln[A] linéaire en fonction du temps	t _{1/2} indépendant de [A] ₀
V = k [A]		
Ordre 2	1/[A] linéaire en fonction du temps	t _{1/2} linéaire en fonction de 1/[A] ₀
$V = k [A]^2$		
Deux réactifs	Dégénérescence de l'ordre pour trouver a et b	
$V = k [A]^a [B]^b$	Réactifs en proportions stœchiométriques pour trouver p = a+b	

Si l'énoncé ne propose aucune hypothèse, on suppose que la réaction suit la loi de Van't Hoff.

Savoir faire une régression linéaire à la calculatrice.

Méthode différentielle
$$v = k[A]^p$$
 d'où $\ln v = \ln k + p \ln [A]$

On trace [A]=f(t) et on détermine la vitesse de disparition de [A] à différents instants par la pente de la tangente à la courbe. Puis on trace lnv en fonction de ln[A].

Loi d'Arrhenius: La constante de vitesse k dépend de la température selon une loi expérimentale :

si l'énergie d'activation $E_{\rm A}$ (énergie minimale que doivent acquérir les réactifs pour que la

réaction chimique s'effectue) est indépendante de la température. A constante d'intégration.

Catalyseur : espèce chimique qui accélère une réaction chimique spontanée sans subir lui-même de modification permanente. Ne figure pas dans l'équation bilan de la réaction. Contraire : inhibiteur de réaction

<u>Loi de Beer-Lambert</u>: L'absorbance ou densité optique $A = \log(I_0/I)$ vérifie $A = (\sum_i \varepsilon_i c_i) l$ ε_i : <u>coefficient d'extinction molaire</u> de cette substance

Loi de Kohlrausch: La conductivité d'une solution contenant les ions B_i^{zi} est donnée par la formule $\sigma = \sum_i \lambda_i \left[B_i^{z_i} \right]$ où λ_i est la conductivité ionique molaire de l'ion considéré, la concentration étant en mol.m⁻³.