Signaux Electriques SE3 L'oscillateur harmonique

Introduction: définition de l'oscillateur harmonique	1
I Oscillations électrique : exemple du circuit LC	
1.) Equation différentielle et résolution	
2.) Bilan de puissance et d'énergie	
II Oscillations mécaniques : exemple du ressort horizontal	
1.) Etude dynamique : Deuxième loi de Newton	
2.) Etude énergétique	6

Introduction : définition de l'oscillateur harmonique

On appelle <u>oscillateur harmonique</u> un système physique décrit par une grandeur x(t) dépendant du temps et vérifiant une équation différentielle de la forme : $\ddot{x} + \omega_0^2 x = 0$ où ω_0 est une constante réelle positive qui est appelée <u>pulsation propre</u> de l'oscillateur harmonique et qui s'exprime en rad.s⁻¹.

Solution

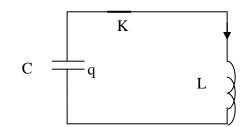
- $x(t) = a \cos(\omega_0.t) + b \sin(\omega_0.t)$ a et b étant constantes, déterminées par les conditions initiales.
- $x(t)=A\cos(\omega_0.t+\phi)$ A est l'amplitude, positive et ϕ l'avance de phase à l'origine.

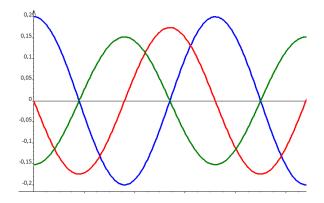
A et φ sont constantes, déterminées par les conditions initiales

I Oscillations électrique : exemple du circuit LC

1.) Equation différentielle et résolution

Le condensateur est initialement chargé, et K est ouvert depuis longtemps. A t=0, on ferme l'interrupteur K.



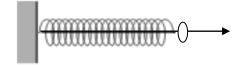


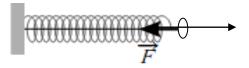
2.) Bilan de puissance et d'énergie

II Oscillations mécaniques : exemple du ressort horizontal

1.) Etude dynamique : Deuxième loi de Newton

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscillateur_horizontal.php





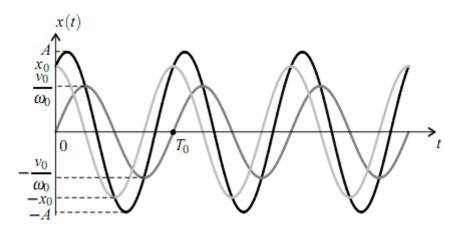
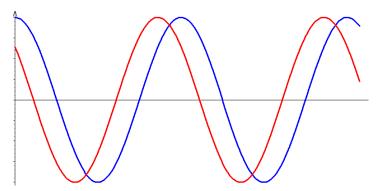
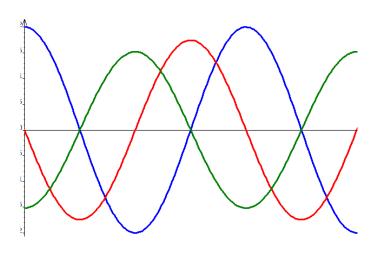


Figure 1.2 – Représentation graphique de x(t) en fonction de t. En gris clair : cas $x_0 \neq 0$ et $v_0 = 0$; en gris foncé : cas $x_0 = 0$ et $v_0 \neq 0$; en noir : cas $x_0 \neq 0$ et $v_0 \neq 0$. La période des oscillations est $T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}}$ (voir paragraphe 2).

 $\underline{Remarque:} \quad x{=}A.cos(\omega_0 \; t) \qquad \quad y{=}A.cos(\omega_0 \; t{+}\phi)$





2.) Etude énergétique

Rappels

Travail d'une force constante, lorsque son point d'application M se déplace de A à B: $W_{A\to B}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB}$

Si le travail de F ne dépend pas du chemin suivi, la force est dite conservative et le travail s'écrit sous la forme :

$$W_{A\to B}(\vec{F}) = -[Ep(B) - Ep(A)] = -\Delta Ep$$

Energie potentielle de pesanteur : Epp = mgz + cste si z est l'altitude

Energie potentielle élastique : $Ep_e = \frac{1}{2}kx^2 + cste$ où $x = l - l_0$

Energie cinétique: $Ec(M) = \frac{1}{2} m v^2(M)$

L'énergie mécanique Em=Ec+ Ep se conserve si toutes les forces qui travaillent dérivent d'une énergie potentielle (en l'absence de frottements)

