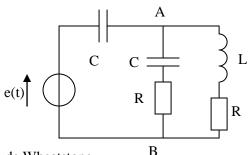
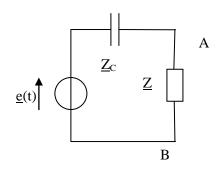
Exercice 1. Pont diviseur de tension.

1.) Donner l'expression littérale de Z, l'impédance totale équivalente entre A et B.

A.N. $ω=10~000~\text{rad.s}^{-1}$; C=20 μ F; L=0,5mH; R=5 Ω . Montrer que cette impédance \underline{Z} est numériquement équivalente à une résistance.

- 2.) Déterminer numériquement l'amplification en tension : $\underline{H} = \underline{u}_{AB}/\underline{e}$.
- 3.) Que vaut $u_{AB}(t)$ si $e(t)=3\cos(\omega t-\pi/3)$?





Exercice 2. Pont de Wheatstone.

1.) Quand le pont est équilibré (courant nul dans l'ampèremètre A), quelle est la relation entre les impédances complexes $\underline{Z}_1, \underline{Z}_2, \underline{Z}_3$ et \underline{Z}_4 ?

2.) Mesure de capacités : Pont de Sauty.

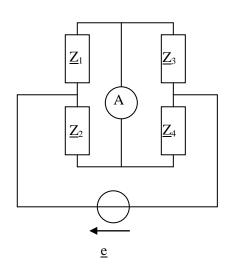
On désire mesurer une capacité C_1 d'impédance \underline{Z}_1 , connaissant les valeurs de R_4 d'impédance \underline{Z}_4 et de C_2 d'impédance \underline{Z}_2 .

Une fois le pont équilibré, grâce au réglage de R_3 d'impédance \underline{Z}_3 , quelle est la formule donnant C_1 ?

3.) Mesure d'inductances : Pont de Maxwell.

On veut déterminer les caractéristiques d'une bobine (L_1, r_1) d'impédance \underline{Z}_1 , connaissant R_2 d'impédance \underline{Z}_2 , R_3 d'impédance \underline{Z}_3 et d'un condensateur de capacité C_4 en parallèle avec R_4 d'impédance équivalente \underline{Z}_4 .

Le pont étant équilibré grâce à R_4 et $C_4,$ quelles sont les formules donnant L_1 et $r_1\ ?$



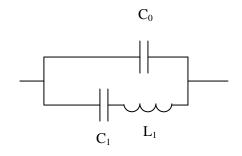
Exercice 3. Etude d'un quartz.

On considère le schéma électrique d'un quartz.

- 1.) Déterminer l'impédance \underline{Z} du quartz, ainsi que $|\underline{Z}|$.
- 2.) Déterminer les pulsations ω_1 et ω_2 rendant respectivement cette impédance nulle et infinie. Montrer que $\omega_2^2 = \omega_1^2 (1 + C_1/C_0)$

A.N.: C₀=10pF, C₁=0,05pF. f₁=100 kHz. Calculer L₁.

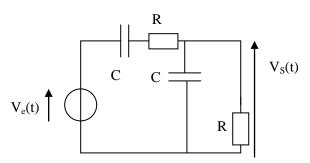
3.) Exprimer $|\underline{Z}|$ en fonction de ω , ω_1 , ω_2 , C_0 , et C_1 . Tracer $|\underline{Z}| = f(\omega)$.



Exercice n°4. Filtre RC.

- 1.) Déterminer les schémas équivalents hautes et basses fréquences.
- 2.) Déterminer la fonction de transfert $\underline{H} = \frac{V_S}{V_e}$ et

$$\underline{H} = \frac{1}{3 + j(x - \frac{1}{x})}$$



où $x=\omega/\omega_0=RC\omega$.

3.) Tracer le module de la fonction de transfert ainsi que la phase en fonction de ω . Quelle est la nature du filtre ?

On modélise la partie mécanique d'un haut-parleur à l'aide d'une masse m, se déplaçant horizontalement sans frottement le long de l'axe $(O; \vec{s}_x)$; cette masse m, assimilée à un point matériel M(m) est reliée à un ressort de longueur à vide ℓ_0 et raideur k et à un amortisseur fluide de constante f; elle est soumise à une force $\vec{F}(t)$, imposée par le courant i(t) entrant dans le haut parleur; on a :

$$\vec{F}(t) = Ki(t)\vec{e_x}$$
, avec K une constante.

On travaille dans le référentiel galiléen terrestre $\Re_{\mathbf{g}}(O; \overrightarrow{e_x}, \overrightarrow{e_y})$. On suppose que le courant i(t) est sinusoïdal :

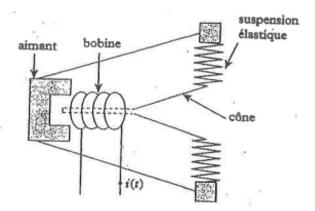
$$i(t) = I_m \cos(\omega t)$$
.

Données: $m = 10 \,\mathrm{g}$; $k = 15\,000 \,\mathrm{N} \cdot \mathrm{m}^{-1}$;

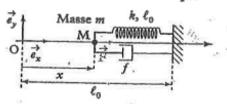
$$K = 200 \text{ N} \cdot \text{A}^{-1}; I_m = 1 \text{ A}.$$

- Écrire l'équation différentielle vérifiée par la position de la masse m.
- 2) La normaliser. On veut $Q = \frac{1}{\sqrt{2}}$;

calculer la valeur du coefficient f.



Modèle mécanique



3) Déterminer l'expression de la réponse forcée x(t); la mettre sous la forme $X_m \cos(\omega t + \varphi)$.

Donnée: $\omega = 6280 \text{ rad} \cdot \text{s}^{-1}$.

Tracer l'allure de la courbe donnant ω → X_m(ω).
 En déduire la bande passante du système.

Exercice n°6: Amortissement d'un vibrographe https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/sismo.php

Un vibrographe est constitué d'un cadre rigide sur lequel sont suspendus un ressort de raideur k et de longueur propre ℓ_0 , un amortisseur de coefficient de frottement h et de masse m . Un stylet solidaire de la masse permet d'enregistrer son mouvement par rapport au cadre.

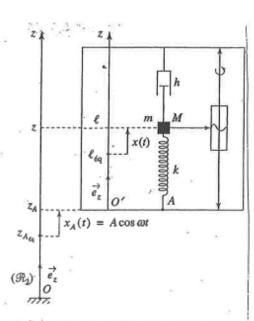
Le cadre est mis en mouvement vertical par rapport au référentiel du laboratoire \mathcal{R}_L supposé galiléen :

$$z_A(t) = z_{A_{4n}} + A\cos\omega t.$$

Remarque: La force de frottement fluide se met sous la forme:

$$\vec{f} = -h(\vec{z} - \vec{z}_A)\vec{e}_z$$

- 1.) On note ℓ_{eq} la longueur à l'équilibre du ressort et $x = \ell \ell_{eq}$ l'élongation de la masse. Déterminer l'équation différentielle en x du mouvement de la masse par rapport au cadre.
- 2.) Par passage à la notation complexe, déterminer en régime forcé l'amplitude des oscillations X_m du point M. Montrer que lorsque ω varie, X_m ne passe par un maximum que pour une certaine valeur du facteur de qualité.



Principe d'un vibrographe.