
Mécanique MC4 Particule dans un champ

I Force de Lorentz	2
1.) Définition :	
2.) Aspect énergétique :	
II Particule dans un champ électrique	
1.) Accélération de particules :	
2.) Déflexion électrostatique :	
3.) Applications :	
III Particule chargée dans un champ magnétique uniforme et permanent	
1.) Trajectoire:	6
2.) Applications	7
Etude documentaire : le LHC grand collisionneur de hadrons	8
Les expériences LHC	9
Les expériences hors LHC	10

<u>Détecteur ATLAS</u> (Système magnétique toroïdal). Accélerateur de particules au CERN. LHC, grand collisionneur de hadrons. Genève

<u>Aurores boréales</u>: Provoquées par l'interaction entre les particules chargées du <u>vent solaire</u> et la haute <u>atmosphère</u>, les aurores se produisent principalement dans les régions proches des <u>pôles</u>, dans une zone annulaire justement appelée « zone aurorale » (entre 65 et 75° de <u>latitude</u>). En cas d'activité magnétique intense, l'arc auroral s'étend et commence à envahir des zones beaucoup plus proches de l'équateur.

Hypothèse: Les champs sont uniformes (indépendants du point considéré), et permanents ou stationnaires (indépendants du temps). On se place en mécanique classique, non relativiste.

I Force de Lorentz

1.) Définition:

Une particule de masse m, de charge q, de vitesse \vec{v} , placée dans un champ électrique \vec{E} et un champ magnétique \vec{B} est soumise à la force de Lorentz $\vec{F} = \vec{F}_e + \vec{F}_m = q\vec{E} + q\vec{v} \wedge \vec{B}$.

Remarque: On considère que toutes les autres forces sont négligeables, en particulier le poids.

2.) Aspect énergétique :

 \vec{E} peut modifier l'énergie cinétique d'une particule, c'est-à-dire la norme de la vitesse.

 \vec{B} ne peut que courber la trajectoire, c'est-à-dire modifier la direction de \vec{v} , sans apporter d'énergie.

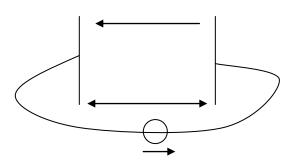
II Particule dans un champ électrique

1.) Accélération de particules :

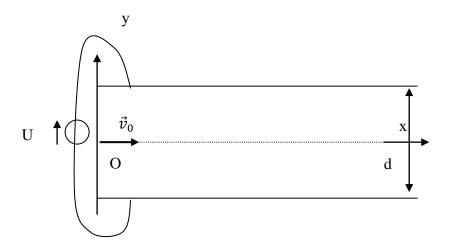
Hypothèse : champ \vec{E} // \vec{v}_0

Le champ va accélérer les particules sans modifier leur direction.

Applications:


1) L'électron-Volt est l'énergie cinétique acquise par une particule de charge $e = 1.6 \cdot 10^{-19} \text{ C}$

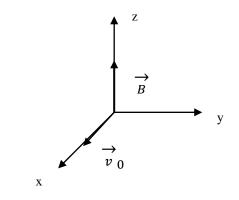
(charge élémentaire) subissant une chute de potentiel de 1 V. $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$ $1 \text{ keV} = 10^3 \text{ eV}$ $1 \text{ MeV} = 10^6 \text{ eV}$

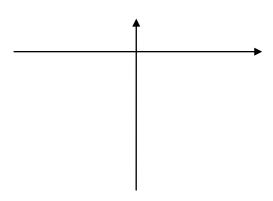

 $1 \text{ GeV} = 10^9 \text{ eV}$

2) Canon à électron

On accélère les électrons entre deux plaques

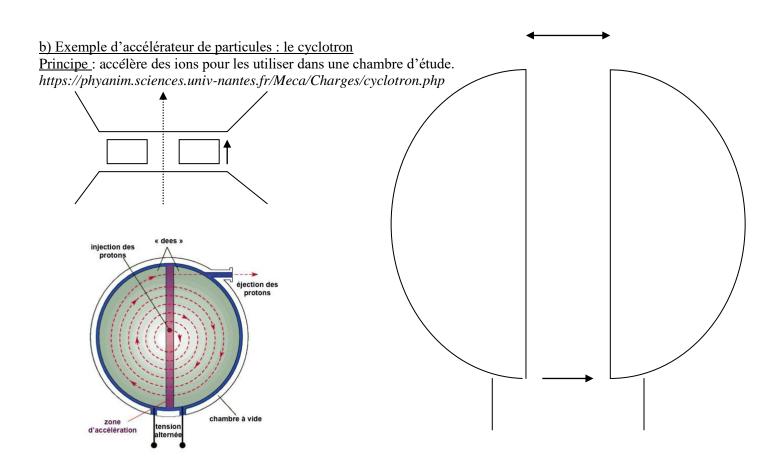
2.) Déflexion électrostatique : Hypothèse : champ $\vec{E} \perp \vec{v}_0$

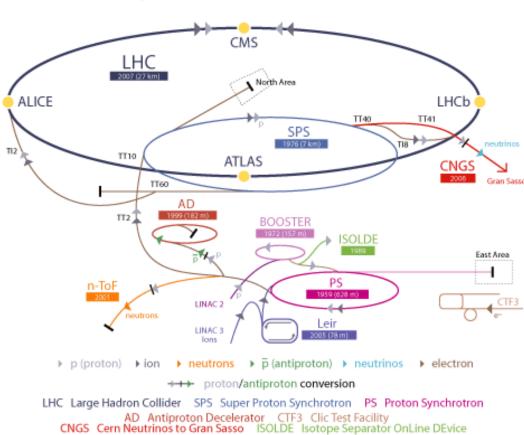




 $\underline{b)\ analyseur\ d'énergie:}\ M\^{e}me\ principe\ que\ l'oscilloscope:\ on\ envoie\ cette\ fois\ un\ faisceau\ hétérocinétique\ de particules identiques.\ La déviation\ est\ proportionnelle\ à\ 1/Ec$

III Particule chargée dans un champ magnétique uniforme et permanent


 $\frac{\text{1.) Trajectoire :}}{\text{Hypothèse : champ } \vec{B} \perp \vec{v}_0}$


2.) Applications

<u>a) Principe du spectrographe de masse</u> : On envoie un faisceau homocinétique de particules de même charge, mais de masses différentes. On les sépare par champ magnétique.

Etude documentaire : le LHC grand collisionneur de hadrons

Le complexe d'accélérateurs du CERN

AD Antiproton Decelerator CTF3 Clic Test Facility
CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight Le LHC, l'accélérateur de particules le plus grand et le plus puissant du monde, est le dernier maillon du complexe d'accélérateurs du CERN. Il consiste en un anneau de 27 kilomètres de circonférence formé d'aimants supraconducteurs et de structures accélératrices qui augmentent l'énergie des particules qui y circulent.

À l'intérieur de l'accélérateur, deux faisceaux de particules circulent à des énergies très élevées et à une vitesse proche de celle de la lumière avant de rentrer en collision l'un avec l'autre. Les faisceaux circulent en sens opposé, dans des tubes distincts placés sous un vide très poussé (ultravide). Ils sont guidés le long de l'anneau de l'accélérateur par un puissant champ magnétique, généré par des électroaimants supraconducteurs. Ces derniers sont composés de bobines d'un câble électrique spécial fonctionnant à l'état supraconducteur, c'est-à-dire conduisant l'électricité sans résistance ni perte d'énergie. Pour cela, les aimants doivent être refroidis à -271°C, une température plus froide que celle de l'espace intersidéral. C'est la raison pour laquelle une grande partie de l'accélérateur est reliée à un système de distribution d'hélium liquide qui refroidit les aimants ainsi que d'autres systèmes annexes.

Des milliers d'aimants de types et de tailles différents sont utilisés pour diriger les faisceaux le long de l'accélérateur. Parmi eux, les aimants principaux, dont 1234 aimants dipolaires de 15m de long utilisés pour courber la trajectoire des faisceaux, et 392 aimants quadripolaires de 5 à 7m de long qui concentrent les faisceaux. Juste avant la collision, un autre type d'aimant est utilisé pour "coller" les particules les unes aux autres, de façon à augmenter les probabilités d'une collision. Ces particules sont si minuscules que les faire entrer en collision revient à lancer deux aiguilles éloignés de 10km, l'une contre l'autre!

Tous les systèmes de contrôle de l'accélérateur et de leur infrastructure technique sont regroupés au Centre de contrôle du CERN. C'est depuis ce Centre que sont déclenchées les collisions des faisceaux au centre des détecteurs de particules.

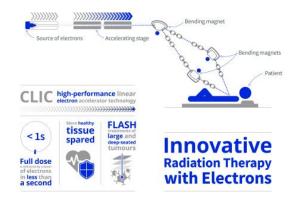
Les expériences LHC

Parmi les expériences menées au Grand collisionneur de hadrons (LHC), sept utilisent des détecteurs pour analyser la myriade de particules produites lors des collisions dans l'accélérateur. Ces expériences sont conduites par des collaborations de chercheurs provenant d'instituts du monde entier. Chacune est différente et se caractérise par ses détecteurs.

Les deux expériences les plus grandes, ATLAS et CMS, exploitent des détecteurs polyvalents pour explorer des domaines aussi vastes que possible. Le fait de disposer de deux détecteurs conçus indépendamment est essentiel pour recouper des informations en cas de découverte. ALICE et LHCb utilisent des détecteurs spécialisés pour se concentrer sur des phénomènes particuliers. Ces quatre détecteurs sont logés dans d'énormes cavernes souterraines disposées le long de l'anneau du LHC.

Les plus petites expériences menées au LHC sont TOTEM et LHCf. Elles sont axées sur les particules dites « à très petits angles » – des protons ou des ions lourds qui se frôlent plutôt que

d'entrer en collision frontale lorsque les faisceaux se croisent. TOTEM utilise des détecteurs placés de part et d'autre du point d'interaction de CMS, tandis que l'installation de LHCf est constituée de deux détecteurs disposés le long de la ligne de faisceau du LHC, à 140 mètres de chaque côté du point de collision d'ATLAS. MoEDAL, qui exploite des détecteurs déployés près de LHCb, a été conçu pour la recherche d'une particule hypothétique appelée monopôle magnétique.


Les expériences hors LHC

Si la recherche au CERN s'est de plus en plus concentrée sur le LHC ces dernières années, les expériences menées à l'aide d'autres accélérateurs ou installations, que ce soit sur le domaine du CERN ou ailleurs, continuent de former une partie importante des activités du Laboratoire.

Dans les expériences avec cible fixes, un faisceau de particules accélérées est orienté sur une cible solide, liquide ou gazeuse, qui peut faire partie intégrante du système de détection. COMPASS, qui étudie la structure des hadrons (des particules constituées de quarks) utilise des faisceaux du Supersynchrotron à protons (SPS). NA61/SHINE a pour objet les propriétés des hadrons lors des collisions de particules sur des cibles fixes. NA62 utilise des protons du SPS pour analyser des modes rares de désintégration des kaons. DIRAC explore les interactions fortes entre les quarks au Synchrotron à protons (PS). L'expérience CLOUD étudie le lien possible entre les rayons cosmiques et la formation des nuages. Les expériences ACE, AEGIS, ALPHA, ASACUSA et ATRAP utilisent toutes des antiprotons du Décélérateur d'antiprotons, tandis que l'expérience CAST a pour objet de trouver des particules hypothétiques ne provenant pas d'oscillations dans les accélérateurs, mais du Soleil.

Ce programme de recherche, d'une grande richesse, couvre un vaste éventail de thèmes de la physique, allant des kaons aux rayons cosmiques et du Modèle standard à la supersymétrie.

http://home.web.cern.ch

<u>https://www.cea.fr/comprendre/Pages/matiere-univers/accelerateurs-de-particules.aspx?Type=Chapitre&numero=1</u>