PTSI 1. Interrogation orale de Sciences Physiques n°28. Semaine du 2/6 au 6/6.

Magnétisme

"MA1 Champ magnétique" COURS UNIQUEMENT

- Champ magnétique terrestre, champ magnétique créé par un solénoïde (formule admise). Ordres de grandeur. Moment magnétique associé à une spire et à un aimant.
- Résultante et puissance des forces de Laplace s'exerçant sur une tige dans le cas des rails de Laplace.
- Couple et puissance des actions mécaniques de Laplace s'exerçant sur une spire rectangulaire. Action d'un champ magnétique sur un aimant.

"MA2 Induction" COURS UNIQUEMENT (début)

- Notion de flux magnétique. Mise en évidence des phénomènes d'induction (savoir décrire les expériences).
- Loi de Lenz, loi de Faraday.
- Circuit fixe dans un champ magnétique variable : Auto-induction, calcul d'inductance propre. Circuit électrique équivalent. Etude énergétique.
- -Deux circuits fixes dans un champ variable : inductance mutuelle, circuit électrique équivalent. Etude énergétique.

On n'a pas encore fait : Principe du transformateur.

<u>Thermodynamique</u> "TH4 Machines thermiques." Exercices

Transformation de la matière

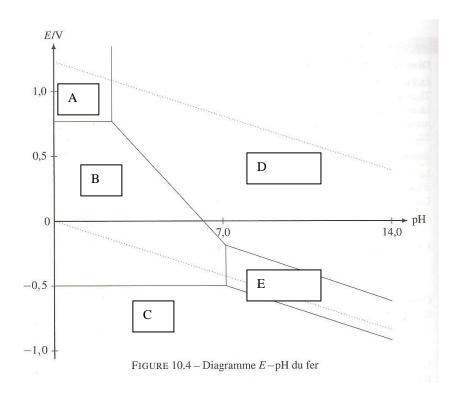
"TM5 Réactions d'oxydoréduction" Exercices

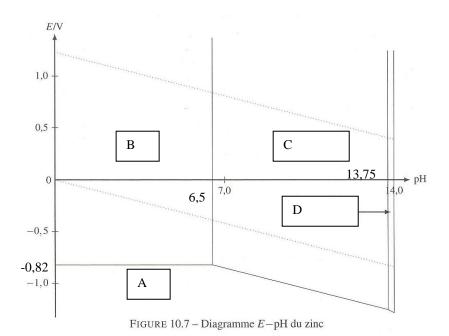
"TM6 Diagrammes potentiel-pH" Cours et exercices

- Construction du diagramme potentiel pH de l'eau.
- Construction du diagramme potentiel-pH du fer.

Les espèces étudiées sont le fer métal $Fe_{(s)}$, Fe^{2+} , Fe^{3+} , $Fe(OH)_{2(s)}$ et $Fe(OH)_{3(s)}$. On choisit une concentration de tracé $c_T = 10^{-2}$ mol.L⁻¹

 $E^{\circ}_{1} (Fe^{3+}/Fe^{2+}) = 0,77 \text{ V}$ $E^{\circ}_{2} (Fe^{2+}/Fe_{(s)}) = -0,44 \text{ V}$ $pKs_{1} (Fe(OH)_{2}(s)) = 15$ $pKs_{2} (Fe(OH)_{3}(s)) = 37$


- Etude du diagramme potentiel-pH du zinc :


Les espèces étudiées sont Zn(s), Zn²⁺ de potentiel standard E° (Zn²⁺ / Zn_(s)) à trouver, Zn(OH)_{2(s)} de pK_S à trouver et Zn(OH)₄ ²⁻ de constante de formation log β 4

à trouver. Placer les espèces sur un diagramme nu et déterminer les constantes ci-dessus.

TP de chimie.

- <u>Dosage redox de Fe²⁺ par Ce⁴⁺</u>: équation bilan de la réaction de dosage, constante d'équilibre, obtention de la courbe $U(V_2)$, estimer les valeurs de E_1° et E_2° à partir de la courbe.
- <u>Dosage de O₂ dissous dans l'eau, méthode de Winckler</u>. Etude du diagramme potentiel pH du manganèse.

