TD TM2 Vitesses de réaction

On donne $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

Exercice n°1: Ions Mercure (II) et Fer (II).

Les ions mercure (II) peuvent être réduits par les ions fer (II) selon la réaction : $2 \operatorname{Fe}^{2+}{}_{(aq)} + 2 \operatorname{Hg}^{2+}{}_{(aq)} \to \operatorname{Hg}_2{}^{2+}{}_{(aq)} + 2 \operatorname{Fe}^{3+}{}_{(aq)}$ de constante cinétique de vitesse k.

On suit la cinétique de la réaction en introduisant 0,01 mol de chaque réactif dans 100 mL d'eau distillée. La concentration des ions Fe³⁺ au cours du temps est donnée dans le tableau ci-dessous :

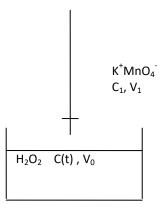
$10^{5}.t(s)$	0	1	4	9	19	∞
[Fe ³⁺] (mol.L ⁻¹)	0	0,05	0,08	0,09	0,095	0,1

Montrer que l'ordre global de la réaction est 2 et déterminer sa constante de vitesse. Déterminer aussi le temps de demi-réaction.

Exercice n°2: Dégénérescence de l'ordre

L'oxydation des ions Sn^{2+} par les ions Fe^{3+} a pour équation : $2\operatorname{Fe}^{3+}$ $_{(aq)}+\operatorname{Sn}^{2+}$ $_{(aq)}\to 2\operatorname{Fe}^{2+}$ $_{(aq)}+\operatorname{Sn}^{4+}$ $_{(aq)}$ $_{(aq)}$ L'expérience montre que cette réaction est totale et que sa vitesse est de la forme : $v=k[\operatorname{Fe}^{3+}]^a[\operatorname{Sn}^{2+}]^b$.

Différentes expériences montrent que :


- en présence d'un grand excès d'ions Fe^{3+} , le temps de demi-réaction $t_{1/2}$ est indépendant de la concentration initiale en ions étain $[Sn^{2+}]_0$;
- en revanche, en présence d'un grand excès d'ions Sn²⁺, t_{1/2} varie linéairement en fonction de 1/ [Fe³⁺]₀.

Déduire de ces renseignements les valeurs de a et b.

Exercice n°3: Décomposition de l'eau oxygénée H₂O₂

On étudie la cinétique de la réaction H_2O_2 $_{(aq)} \rightarrow H_2O$ $_{(\ell)} + \frac{1}{2}O_2$ $_{(aq)}$ qui est une réaction lente, l'eau oxygénée étant de concentration initiale C_0 .

Pour cela, on prélève toutes les 5 minutes un échantillon d'eau oxygénée de la solution précédente, de concentration C(t) à l'instant t considéré, de volume $V_0 = 20 \text{ cm}^3$ et on effectue un dosage de cet échantillon par du permanganate de potassium K^+ , MnO_4^- de concentration $c_1 = 0,020 \text{ mol.L}^{-1}$, en milieu acide, selon la réaction suivante :

$$2\ MnO_{4\ (aq)} + 5\ H_2O_{2(aq)} + 6\ H_3O_{(aq)}^+ = \ 2\ Mn^{2+}{}_{(aq)} + 5\ O_{2(g)} + 14\ H_2O_{(\ell)} \qquad \text{qui est une réaction rapide.}$$

On obtient l'équivalence du dosage pour un volume V₁ de permanganate versé :

On obtient i equivalence du dosage pour un volume vi de permanganate verse.						
t (min)	0	5	10	20	30	40
$V_1 \text{ (cm}^3)$	40	32	26	16.6	11	7

Montrer que ces données permettent d'interpréter une cinétique du premier ordre. Calculer la constante de vitesse k et le temps de demi-réaction t_{1/2}.

Exercice n°4: Réaction entre gaz

Soit la réaction en phase gazeuse: $2 NO_{(g)} + 2 H_{2(g)} = N_{2(g)} + 2 H_2O_{(g)}$

On supposera que chaque gaz est parfait et que le mélange se comporte comme un gaz parfait.

On détermine la vitesse initiale v_0 de la réaction en mesurant la variation de pression totale correspondant à un intervalle de temps très court, et constant d'une expérience à l'autre.

La pression P est donnée en torr, qui est une unité proportionnelle au Pascal : 1 torr = 133.32 Pa. Il est inutile de faire le changement d'unité, on peut simplement utiliser le fait que P(Pa)= C*P(torr) où C est une constante.

On obtient pour diverses conditions:

a) Pression partielle initiale de $H_2 = 500$ torr

Pression partielle initiale de	400	250	150
NO (torr)			
V_0	183	72	26

b) Pression partielle initiale de NO = 500 torr

Pression partielle initiale de	300	200	150
H ₂ (torr)			
V_0	161	107	80

Déduire de ces résultats les ordres partiels initiaux par rapport à NO et H₂.

Exercice n°5: Energie d'activation.

Une colle rapide sèche en 5 min à 20°C et en 2 min à 30°C suivant la réaction $A \rightarrow B$. Déterminer l'énergie d'activation de la réaction.

On fera une hypothèse sur l'ordre de la réaction, et on supposera la colle sèche une fois une concentration particulière [A]_{finale} atteinte.