Résumé de cours Transformation de la matière TM2 Cinétique chimique

<u>Hypothèse</u>: systèmes isochores monophasés. réaction totale sens direct (1).

 $\alpha_i A_i = \alpha_i' A_i'$

pour les réactifs, + pour les produits, on divise par le coefficient stœchiométrique -

Une réaction <u>admet un ordre</u> si sa loi expérimentale de vitesse peut se mettre sous la forme $v = k \prod [A_i]^{p_i}$

constante de vitesse, ne dépend que de la température T.

 $\underline{\text{ordre partiel}} \text{ par rapport au constituant } A_i. \text{ Entier ou rationnel } \geq 0 \text{ ; } p = \sum p_i \text{ : } \underline{\text{ordre global}} \text{ de la réaction.}$ p_i:

Une réaction suit la loi de Van't Hoff lorsque les ordres partiels sont égaux aux coefficients stœchiométriques dans

l'expression de la vitesse. La réaction est dite aussi d'<u>ordre simple</u>.

$$v = k \prod_{\text{réactifs}} [A_i]^{\alpha_i}$$

Exemple: $H_{2(g)} + I_{2(g)} \rightarrow 2 HI_{(g)}$ $v = -\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = +\frac{1}{2} \frac{d[HI]}{dt}$ La réaction suit la loi de Van't Hoff: $v = k[H_2][I_2]$

Loi cinétique : concentration du réactif A en fonction du temps.

Méthode intégrale : on cherche à tracer une droite pour vérifier l'ordre de la réaction.

<u>Temps de demi-réaction</u> $t_{1/2}$ tel que $[A](t_{1/2}) = \frac{a_0}{a_1}$

Si l'énoncé ne propose aucune hypothèse, on suppose que la réaction suit la loi de Van't Hoff.

Savoir faire une régression linéaire à la calculatrice.

Ordre de la réaction		méthode intégrale (faire les démos)	méthode des temps de demi-réaction (démo)
Ordre 0	$\mathbf{v} = \mathbf{k}$	[A] linéaire en fonction du temps	t _{1/2} linéaire en fonction de [A] ₀
Ordre 1	v = k [A]	ln[A] linéaire en fonction du temps	t _{1/2} indépendant de [A] ₀
Ordre 2	$v = k [A]^2$	1/[A] linéaire en fonction du temps	$t_{1/2}$ linéaire en fonction de $1/[A]_0$
Pour deux réactifs		Dégénérescence de l'ordre pour trouver a et b	
$v = k [A]^a [B]^b$		Réactifs en proportions stœchiométriques pour trouver p = a+b	

Méthode différentielle
$$v = k[A]^p$$
 d'où $\ln v = \ln k + p \ln [A]$

On trace [A]=f(t) et on détermine la vitesse de disparition de [A] à différents instants par la pente de la tangente à la courbe. Puis on trace lnv en fonction de ln[A].

Méthode des vitesses initiales

$$\ln v_0 = \ln k + p \ln [A]_0$$

Permet de déterminer l'ordre initial de la réaction.

On trace [A]=f(t) pour différentes $[A]_0$ à la même température.

La vitesse initiale est donnée par la pente de la tangente à la courbe à l'origine.

Loi d'Arrhenius: La constante de vitesse k dépend de la température selon une loi expérimentale :

si l'énergie d'activation $E_{\rm A}$ (énergie minimale que doivent acquérir les réactifs pour que la

réaction chimique s'effectue) est indépendante de la température. A constante d'intégration.

<u>Catalyseur</u> : espèce chimique qui accélère une réaction chimique spontanée sans subir lui-même de modification permanente. Ne figure pas dans l'équation bilan de la réaction. <u>Contraire</u> : <u>inhibiteur de réaction</u>

<u>Loi de Beer-Lambert</u>: L'absorbance ou densité optique $A = \log(I_0/I)$ vérifie $A = (\sum_i \varepsilon_i c_i)l$ ε_i : <u>coefficient d'extinction molaire</u> de cette substance

Loi de Kohlrausch: La conductivité d'une solution contenant les ions B_i^{zi} est donnée par la formule $\sigma = \sum_i \lambda_i \left[B_i^{z_i} \right]$ où λ_i est la conductivité ionique molaire de l'ion considéré, la concentration étant en mol.m⁻³.