PROGRAMMES 5 et 6.

PROGRAMME 5 : du 13/10 au 17/10

Reprise des sommes

Nouvelles fonctions usuelles

Résultat	sur	la dér	ivabilité	d'u	ne fond	etion	récii	oroa	ue.
 1 COS CITOCO	DUL	ia aci	1 (00011100	a a	110 10110	701011	TOOT	2104	uc.

☐ Définition de Arcsin, dérivabilité et dérivée

☐ Définition de Arccos, dérivabilité et dérivée

☐ Définition de Arctan, dérivabilité et dérivée

 \square Définition de ch, sh, écriture de $\exp(x)$ en fonction de ch(x) et sh(x), formule reliant ch $^2(x)$ et sh $^2(x)$ pour $x \in \mathbb{R}$. Dérivées, variations et graphe.

Remarque aux colleurs : La seule formule de trigonométrie hyperbolique à connaître est $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$ pour $x \in \mathbb{R}$. La fonction tangente hyperbolique et les fonctions hyperboliques réciproques sont hors programme.

Complexes: début

- ★ Parties réelle et imaginaire. Opérations sur les nombres complexes. Conjugaison, compatibilité avec les opérations.
- ★ Module d'un nombre complexe. Relation $|z|^2 = z \, \overline{z}$, module d'un produit, d'un quotient. Inégalité triangulaire, cas d'égalité.
- ★ Nombres complexes de module 1 : Notation U. Définition de $e^{i\theta}$ pour θ réel. Si θ et θ' sont deux réels, alors : $e^{i(\theta+\theta')} = e^{i\theta} e^{i\theta'}$.

Formules d'Euler : $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$, $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ Formule de Moivre.

Applications à la trigonométrie : Linéarisation, opération inverse.

Remarque aux colleurs : Pas de forme trigonométrique cette semaine.

Question de savoir-faire

On demandera à chaque étudiant, en plus de la preuve et de l'énoncé, une linéaristation ou une « dé-linéarisation » par passage en complexes.

Un énoncé au choix à demander

- \square Sommes usuelles : $\sum_{k=0}^n k, \sum_{k=0}^n k^2, \sum_{k=0}^n k^3$ où $n \in \mathbb{N}$
- $\square \sum_{k=0}^n q^k \text{ où } n \in \mathbb{N}, q \in \mathbb{R} \text{ puis } \sum_{k=p}^n q^k \text{ pour } 0 \leq p \leq n$
- \Box Factorisation de $a^n-b^n,\,a^3-b^3,a^3+b^3$
- ☐ Formule du binôme de Newton
- \square Écrire de deux manières $\sum_{1 \leq i \leq j \leq n} a_{i,j}$
- ☐ Définition de Arcsin, dérivabilité et dérivée
- ☐ Définition de Arccos, dérivabilité et dérivée
- ☐ Définition de Arctan, dérivabilité et dérivée
- \square Définition de ch, sh, écriture de $\exp(x)$ en fonction de ch(x) et sh(x), formule reliant ch(x) et sh(x) pour $x \in \mathbb{R}$
- \square Définition du module de $z \in \mathbb{C}$ (2 expressions à donner)
- \square Donner 2 caractérisations pour $z \in \mathbb{R}$, 2 caractérisations pour $z \in i\mathbb{R}$
- ☐ Propriétés de la conjugaison (somme, différence, produit, quotient)
- ☐ Propriétés du module (produit, quotient)
- \square Traduire |z|=1 de trois manières :

$$x^2 + y^2 = 1$$
 si $x = \operatorname{Re}(z), y = \operatorname{Im}(z); \overline{z} = \frac{1}{z}; \exists \theta \in \mathbb{R}, z = e^{i\theta}$

- ☐ Inégalité triangulaire
- ☐ Formules d'Euler
- \Box Propriétés algébrique des $e^{i\theta}$, formule de Moivre

Démonstrations

- ☐ Formule du binôme de Newton.
- □ Dérivabilité de Arcsin et dérivée.
- \square Pour tous complexes z_1 et z_2 , $||z_1| |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$.

PROGRAMME 6 : du 03/11 au 07/11

Reprise des nouvelles fonctions usuelles

Reprise du début des complexes

Complexes: suite et fin

 \star Écriture d'un nombre complexe non nul sous la forme $re^{i\theta}$ avec r>0 et $\theta\in\mathbb{R}$. Arguments d'un nombre complexe non nul. Notation $Arg(z) \equiv \theta(2\pi)$.

Factorisation de $e^{ip} \pm e^{iq}$, $1 \pm e^{i\theta}$.

Calcul de
$$\sum_{k=0}^{n} \cos(kt)$$
 et $\sum_{k=0}^{n} \sin(kt)$.
Argument d'un produit, d'un quotient.

★ Équation du second degré : Racines carrées d'un nombre complexe.

Résolution des équations du second degré, discriminant.

Somme et produit des racines d'une équation du second degré.

- \star Racines *n*-ièmes : Description des racines *n*-ièmes de l'unité. Notation \mathbb{U}_n . Somme des racines *n*-ièmes de l'unité.
- \star Exponentielle complexe : Définition de e^z pour z complexe : $e^z = e^{\operatorname{Re}(z)}e^{\operatorname{i}\operatorname{Im}(z)}$. Notations $\exp(z)$, e^z . Exponentielle d'une somme. Pour tous z et z' dans \mathbb{C} , $\exp(z) = \exp(z')$ si et seulement si $z - z' \in 2 i \pi \mathbb{Z}$.
- \bigstar Nombres complexes et géométrie plane : On identifie $\mathbb C$ au plan usuel muni d'un repère orthonormé direct. Point du plan associé à un nombre complexe, affixe d'un point du plan, affixe d'un vecteur du plan.

Interprétation géométrique de |z-z'|, cercles et disques.

Traduction de l'alignement et de l'orthogonalité au moyen d'affixes.

Transformation $z \mapsto z + b$; interprétation en termes de translation.

Transformation $z \mapsto kz$, $(k \in \mathbb{R}^*)$; homothétie de centre O et de rapport k.

Transformation $z \mapsto e^{i\theta}z$; rotation plane de centre O et d'angle θ .

Transformation $z \mapsto \overline{z}$; interprétation en termes de symétrie axiale.

★ Dérivée d'une fonction à valeurs complexes. La dérivée est définie via les parties réelle et imaginaire.

Dérivée d'une combinaison linéaire, d'un produit, d'un quotient. Brève extension des résultats sur les fonctions à valeurs réelles.

Question de savoir-faire

On demandera à chaque étudiant, en plus de la preuve et de l'énoncé, une linéaristation ou une « dé-linéarisation » par passage en complexes.

Un énoncé au choix à demander

- ☐ Définition rigoureuse de Arcsin, dérivabilité et dérivée
- ☐ Définition rigoureuse de Arccos, dérivabilité et dérivée
- ☐ Définition rigoureuse de Arctan, dérivabilité et dérivée
- \square Définition de ch, sh, écriture de $\exp(x)$ en fonction de $\operatorname{ch}(x)$ et $\operatorname{sh}(x)$, formule reliant $\operatorname{ch}^2(x)$ et $\operatorname{sh}^2(x)$ pour $x \in \mathbb{R}$
- \square Définition du module de $z \in \mathbb{C}$ (2 expressions à donner)
- \square Donner 2 caractérisations pour $z\in\mathbb{R},$ 2 caractérisations pour $z\in i\mathbb{R}$
- ☐ Propriétés de la conjugaison (somme, différence, produit, quotient)
- ☐ Propriétés du module (produit, quotient)
- Traduire |z|=1 de trois manières $(x^2+y^2=1 \text{ si } x=\text{Re}(z),y=\text{Im}(z),$ $\overline{z}=\frac{1}{z},\ \exists \theta\in\mathbb{R},z=e^{i\theta})$

- ☐ Inégalité triangulaire
- ☐ Formules d'Euler
- \square Propriétés algébrique des $e^{i\theta}$, formule de Moivre
- ☐ Écriture trigonométrique d'un complexe non nul
- ☐ Résultat sur les racines carrées d'un complexe non nul
- \square Solutions de l'équation $az^2 + bz + c = 0$ avec a, b, c complexes, $a \neq 0$
- ☐ Relations racines/coefficients pour une équation de degré 2
- \square Racines $n^{\text{èmes}}$ de l'unité : définition et théorème
- \square Définition de e^z pour $z\in\mathbb{C}$ et principales propriétés
- ☐ Caractérisation de la colinéarité, de l'orthogonalité de 2 vecteurs
- \Box Interprétation de $z\mapsto e^{i\alpha}z$

Démonstrations

- \square Formule donnant $\operatorname{Arctan} x + \operatorname{Arctan} \left(\frac{1}{x}\right)$ pour $x \in \mathbb{R}^*$.
- \square Pour tous complexes z_1 et z_2 , $||z_1| |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$.
- \square Calculer $\sum_{k=0}^{n} \cos(kt)$ et $\sum_{k=0}^{n} \sin(kt)$ où $t \in \mathbb{R}, n \in \mathbb{N}$.