
Signaux Electriques

SE4 Oscillateurs amortis en régime transitoire

I Le circuit RLC série en régime libre	1
1.) Mise en équation	1
2.) Les solutions	3
II Réponse à un échelon de tension	8
1.) Les équations différentielles	8
2.) Mise en équation et résolution	
3.) Les résultats	9
4.) Bilan énergétique	10
III Oscillateur amorti avec frottement visqueux	11
1.) Mise en équation	11
2.) Analogie électromécanique	12
3.) Solutions	13
4.) Bilan énergétique	14

I Le circuit RLC série en régime libre 1.) Mise en équation a) Equation différentielle

b) Réduction canonique

On pose sur l'équation différentielle
$$\frac{d^2 u_C}{dt^2} + \frac{R}{L} \frac{du_C}{dt} + \frac{1}{LC} u_C(t) = 0$$

$$\frac{d^2 u_C}{dt^2} + 2\lambda \frac{du_C}{dt} + \omega_0^2 u_C(t) = 0$$

ou
$$\frac{d^2 u_C}{dt^2} + \frac{\omega_0}{Q} \frac{du_C}{dt} + \omega_0^2 u_C(t) = 0$$

$$2\lambda = \frac{R}{L}$$

$$\lambda = \frac{R}{2L}$$

$$\omega_0^2 = \frac{1}{LC}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\frac{\omega_0}{Q} = \frac{R}{L}$$

$$2\lambda = \frac{R}{L}$$

$$\lambda = \frac{R}{2L}$$

$$\omega_0^2 = \frac{1}{LC}$$

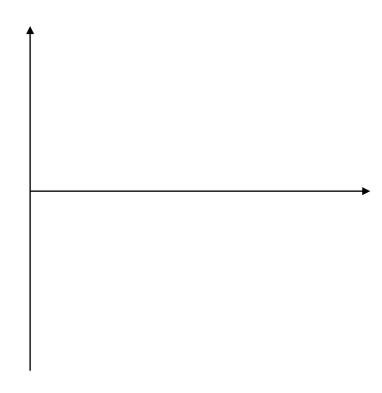
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\frac{Pulsation propre}{Pulsation propre}$$

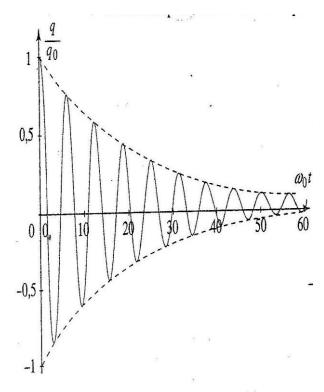
$$\frac{\omega_0}{Q} = \frac{R}{L}$$

$$Q = \frac{L\omega_0}{R} = \frac{1}{RC\omega_0} = \frac{1}{R}\sqrt{\frac{L}{C}}$$
Facteur

Facteur de qualité


2.) Les solutions

On remplace la fonction par 1, la dérivée première par r, la dérivée seconde par r².

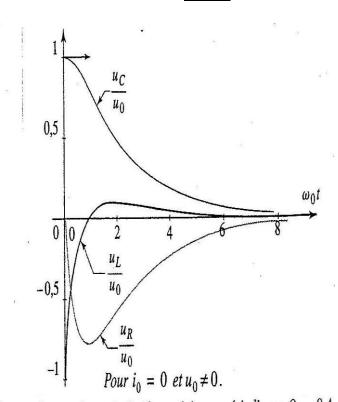

Equation caractéristique $r^2 + 2\lambda r + \omega_0^2 = 0$ équation du second degré du type $ar^2 + br + c = 0$ dont on cherche les racines. Discriminant : $(\Delta = b^2 - 4ac)$ $\Delta = 4\lambda^2 - 4\omega_0^2$

a) Cas $\Delta < 0$: Régime pseudopériodique $\lambda < \omega_0 \text{ ou } Q > \frac{1}{2} \text{ ou } R < R_C$ 2 solutions complexes r_1 et r_2 de la forme $r = \frac{-b \pm j\sqrt{-\Delta}}{2a}$ $r = -\lambda \pm j\Omega$ $\Omega = \frac{\sqrt{-\Delta}}{2} = \sqrt{\omega_0^2 - \lambda^2}$ Pseudo-pulsation

Après calculs, on trouve : $u_C(t) = \exp(-\lambda t) \cdot \left[a\cos(\Omega t) + b\sin(\Omega t)\right] = A\exp(-\lambda t)\cos(\Omega t + \varphi)$ où a, b, A et φ sont des constantes réelles, déterminées par les conditions initiales.

<u>Remarques</u>: 1) La pseudo-période est plus grande que la période propre. $\Omega = \sqrt{\omega_0^2 - \lambda^2} < \omega_0$ donc $T > T_0$.

Doc. 18. Régime pseudo-périodique. Q = 10; $q(0) = q_0$ et i(0) = 0.

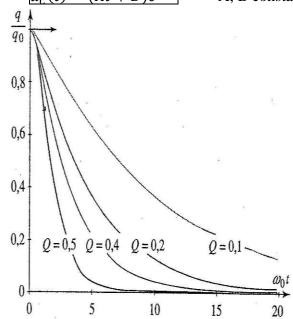

b) $\Delta > 0$ Régime apériodique

2 solutions réelles r₁ et r₂

 $\lambda > \omega_0$ ou $Q < \frac{1}{2}$

ou $R > R_C$

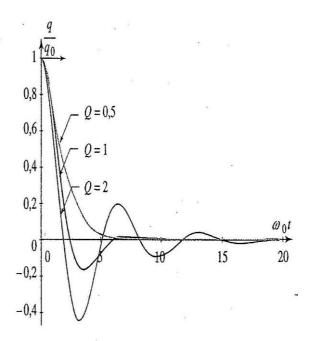
 $u_C(t) = Ae^{r_1t} + Be^{r_2t}$ A, B constantes réelles.


Doc. 15. d.d.p. aux bornes des trois dipôles : régimes apériodiques Q=0,4

c) $\Delta = 0$: Régime critique

1 solution double réelle r₀

$$u_C(t) = (At + B)e^{-\lambda t}$$


A, B constantes réelles.

Doc. 14. Régimes apériodique (Q < 0.5) et critique (Q = 0.5).

Conditions initiales $(q_0 \neq 0, i_0 = 0)$.

$$Q = \frac{1}{2}$$
 ou $\lambda = \omega_0$ ou $R = R_C$

Doc. 20. Régimes pseudo-périodique et critique. Condensateur initialement chargé i(0) = 0.

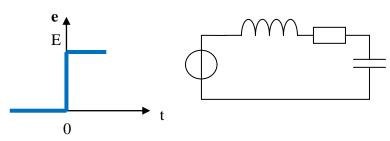
II Réponse à un échelon de tension

1.) Les équations différentielles

Généralisation : Commande f(t)

Réponse y(t)

 $a_0 y + a_1 \frac{dy}{dt} + a_1 \frac{d^2y}{dt^2} = f(t)$ Equation différentielle du second ordre (**ou du premier ordre si a₂=0**) <u>Solution complète</u>: $y(t) = y_\ell(t) + y_f(t)$

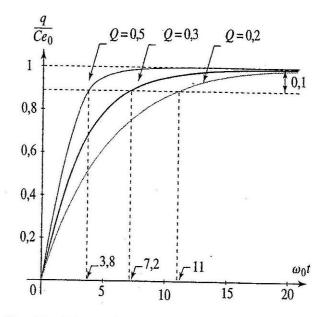

• $y_{\ell}(t)$ est la <u>solution libre</u> ou solution générale de l'équation sans second membre (ou équation homogène) $a_0 y_{\ell} + a_1 \frac{dy_{\ell}}{dt} + a_1 \frac{d^2 y_{\ell}}{dt^2} = 0$

Elle correspond au <u>régime libre</u> du circuit (c'est-à-dire sources éteintes).

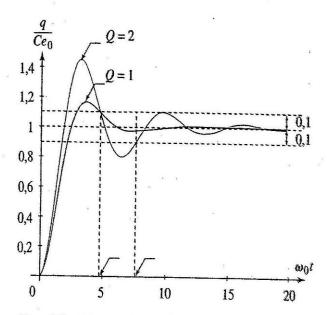
 \bullet $y_f(t)$ est la <u>solution forcée</u> ou solution particulière de l'équation avec second membre (ou équation complète)

Elle correspond $a_0 y_f + a_1 \frac{dy_f}{dt} + a_1 \frac{d^2 y_f}{dt^2} = 0$ au <u>régime permanent</u>. Elle est du même type que le second membre : Si f(t) est une constante, $y_f(t)$ est aussi une constante.

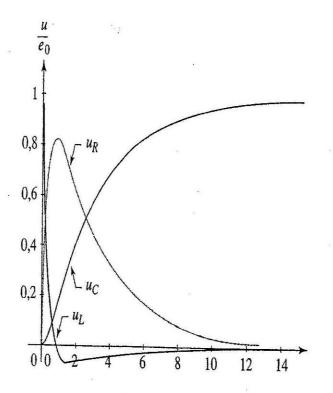
2.) Mise en équation et résolution

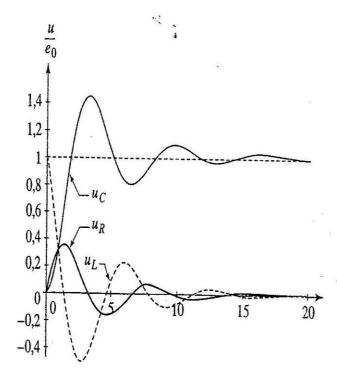


$$\Delta < 0 \quad u_C(t) = \exp(-\lambda t) \cdot \left[A\cos(\Omega t) + B\sin(\Omega t) \right] + E = K\exp(-\lambda t)\cos(\Omega t + \varphi) + E$$


$$\Delta > 0 \ u_C(t) = Ae^{r_1t} + Be^{r_2t} + E$$

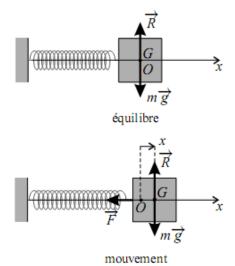
$$\Delta = 0 \quad u_C(t) = (At + B)e^{-\lambda t} + E$$


3.) Les résultats


Doc. 35a. Réponse à un échelon de tension. Régimes apériodiques.

Doc. 36a. Réponse à un échelon de tension. Régimes pseudo-périodiques.

Doc. 35c. Réponse à un échelon de tension. Q = 0,3.

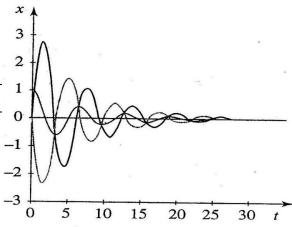

Doc. 36c. Réponse à un échelon de tension. Q = 2.

4.) Bilan énergétique

III Oscillateur amorti avec frottement visqueux

1.) Mise en équation

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscillateur_horizontal.php

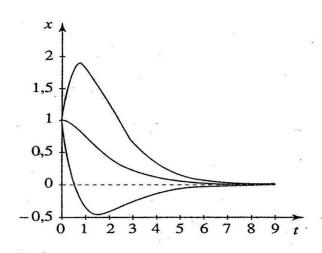

$\frac{d^2x}{dt^2} + \frac{\alpha}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$	ormes canoniques:	$\frac{d^2x}{dt^2} + 2x$	$\lambda \frac{dx}{dt} + \omega_0^2 x = 0$	ou	$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}$	$\frac{dx}{dt} + \omega_0^2 x = 0$	
Pulsation propre	Coefficient d'amortissement		Facteur de qual				
2.) Analogie électr	romécanique anique				Electric	itá	
Equation différentielle :	amque				Licente	ite	
Pulsation propre :							
Facteur de qualité							
Elongation:							
Liongation .							
Vitesse:							
Masse:							
Coefficient de frottement	fluide:						
Raideur du ressort :							
Energie mécanique :							

3.) Solutions

a) Régime pseudo-périodique

$$\Delta < 0$$
 $\lambda < \omega_0$ ou $Q > \frac{1}{2}$

$$x(t) = \exp(-\lambda t) \cdot \left[A\cos(\Omega t) + B\sin(\Omega t) \right] = K\exp(-\lambda t)\cos(\Omega t + \varphi)$$

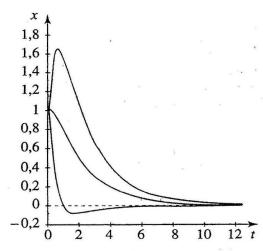

Doc. 12. Oscillateur harmonique amorti par frottement fluide : régime pseudo-périodique $\left(Q > \frac{1}{2}\right)$.

Le mobile est lâché en $x = x_0$ avec une vitesse v_0 positive, nulle ou négative pour les trois cas apparaissant sur la figure.

b) Régime apériodique

$$\Delta > 0$$
 $\lambda > \omega_0$ ou $Q < \frac{1}{2}$

$$x(t) = Ae^{r_1t} + Be^{r_2t}$$


Doc. 17. Oscillateur harmonique amorti par frottement fluide : régime apériodique $\left(Q < \frac{1}{2}\right)$ suivant les conditions initiales, l'élongation passe par un extremum ou tend uniformément vers zéro.

c) Régime critique

$$\Delta = 0$$
 $\lambda = \omega_0$ ou $Q = \frac{1}{2}$

$$x(t) = (At + B)e^{-\lambda t}$$

4.) Bilan énergétique

Doc. 15. Oscillateur harmonique amorti par frottement fluide : régime critique $\left(Q = \frac{1}{2}\right)$. Les conditions initiales sont les mêmes que celles du mouvement pseudo-périodique (doc. 12). Dans tous les cas, le retour à l'équilibre s'effectue plus rapidement.