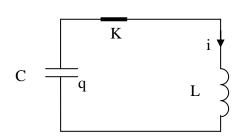
Résumé de cours SE3. L'oscillateur harmonique

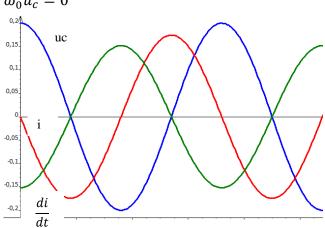

Oscillateur harmonique : $\ddot{x} + \omega_0^2 x = 0$ où ω_0 est la pulsation propre.

Solution $x(t) = a \cos(\omega_0 t) + b \sin(\omega_0 t) = A \cos(\omega_0 t + \phi)$ A est l'amplitude, positive et ϕ l'avance de phase.

I. Oscillateur électrique : le circuit LC série en régime libre

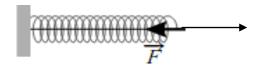
$$\underline{A\ t=0}$$
: $i=0$ et $u_C=u_{C0}$

At = 0^+ : Par continuité : i = 0 et $u_C = u_{C0}$.


Equation de maille avec $i = C \frac{du_C}{dt}$ et $u_L = L \frac{di}{dt}$ donc $\frac{d^2u_C}{dt^2} + \omega_0^2 u_C = 0$

 $u_C(t) = a \cos(\omega_0 t) + b \sin(\omega_0 t)$

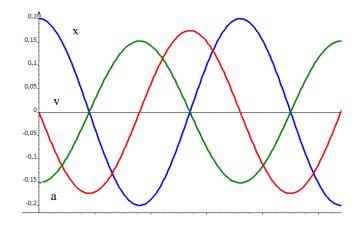
<u>Pulsation propre</u> $\omega_0 = \frac{1}{\sqrt{LC}}$ <u>Période propre</u> : $T_0 = \frac{2\pi}{\omega_0}$


<u>Bilan de puissance</u> : Equation de maille que l'on multiplie par i. On obtient : $\frac{d}{dt}(\mathcal{E}_C + \mathcal{E}_L) = 0$

où l'énergie de la bobine est $\mathcal{E}_L = \frac{1}{2}Li_L^2$ et l'énergie du condensateur idéal est $\mathcal{E}_C = \frac{1}{2}Cu_C^2$

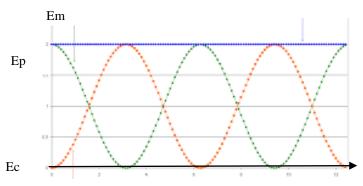
II. Oscillateur mécanique : le ressort horizontal

Force de rappel du ressort : $\vec{F}_r = -kx\vec{e}_x$ où le vecteur unitaire \vec{e}_x est dans le sens de l'allongement du ressort où $x = \ell - \ell_o$


<u>Loi fondamentale de la dynamique</u> : $m\vec{a}_M = \vec{P} + \vec{R}_N + \vec{F}_r$ donne $\frac{d^2x}{dt^2} + \omega_0^2x = 0$

d'où $x(t) = a \cos(\omega_0 t) + b \sin(\omega_0 t) = A \cos(\omega_0 t + \phi)$

Pulsation propre $\omega_0 = \sqrt{\frac{k}{m}}$


 $\underline{\mathbf{A} \ \mathbf{t} = \mathbf{0}} : \mathbf{v} = \mathbf{0} \ \mathbf{et} \ \mathbf{x} = \mathbf{x}_0$

<u>Calcul de déphasage</u> : $\phi = \omega_0 . \Delta t$

Energie potentielle élastique : $E_{pe} = \frac{1}{2}kx^2 + cste$ Energie potentielle de pesanteur : $E_{pp} = mgz + cste$ si z est l'altitude (\vec{e}_z vers le haut). Energie cinétique : $Ec = \frac{1}{2}mv^2$ Energie mécanique Em = Ec+Ep= Cste si toutes les forces qui travaillent sont conservatives (en l'absence de

frottement). Em = Em(t=0).

