TD R4. Méthodes physiques d'analyse.

Cations				Anions				
H ₃ O+	35,0	Cu ²⁺	10,7	HO-	19,8	NO ₃	7,1	
Fe ³⁺	20,4	Mn ²⁺	10,7	S ₂ O ₃ ²⁻	17,0	ClO ₄ -	6,7	
Al ³⁺	18,3	Mg ²⁺	10,6	SO ₄ 2-	16,0	MnO ₄	6,1	
Pb ²⁺	14,2	Zn ²⁺	10,6	C2O42-	14,8	F-	5,5	
Ba ²⁺	12,7	NH ₄ +	7,4	CO, 2-	13,9	HCOO-	5,5	
Ca ²⁺	11,9	K+	7,3	Br-	7,8	HCO,-	4,5	
Fe ²⁺	10,8	Ag+	6,2	-	7,7	CH,COO-	4,1	
Ni ²⁺	10,8	Na ⁺	5,0	Cl-	7,6	C ₆ H ₅ COO-	3,2	

23 Réaction de l'acide avec un métal

On verse un volume V_0 de solution d'acide chlorhydrique $(H_3O^+_{(aq)}, Cl^-_{(aq)})$, de conductivité $\sigma=55.4~{\rm mS\cdot m^{-1}}$, sur du fer métallique Fe.

L'équation de la réaction qui se produit est :

$$2 H_3 O^{+}_{(aq)} + Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + H_{2(q)} + 2 H_2 O_{(\ell)}$$

La réaction produit V=10.0 mL de dihydrogène, considéré comme un gaz parfait, à une température de 25.0 °C et une pression $P=1.01\times10^5$ Pa.

Données • Conductivités molaires ioniques • Rabat IV

Constante des gaz parfaits : R = 8,31 J·mol⁻¹·K⁻¹

• $0 \text{ K} = -273,1 ^{\circ}\text{C}$

- Calculer la concentration en ions oxonium de la solution. En déduire son pH.
- 🗅 Calculer la quantité de matière de dihydrogène produite par cette réaction.
- $oldsymbol{\bigcirc}$ En déduire le volume minimal V_0 de solution utilisée.

73 Réaction avec l'acide chlorhydrique

1. Acide chlorhydrique

Le pH d'une solution diluée d'acide chlorhydrique vaut 3,40. Sa conductivité est $\sigma = 17.0 \times 10^{-3} \; \text{S} \cdot \text{m}^{-1}$. En utilisant deux méthodes différentes, calculer la concentration en ions oxonium de cette solution.

2. Étude d'une réaction

On considère la réaction entre cet acide chlorhydrique et des ions hydrogénocarbonate ${\rm HCO_3}^-{}_{\rm (aq)}$:

$$\mathrm{H_3O^+}_{(aq)} + \mathrm{HCO_3}^-_{(aq)} \rightarrow \mathrm{CO_2}_{(g)} + 2\ \mathrm{H_2O}_{(\ell)}$$

Dans les conditions de l'expérience, la pression est $P=1\,020$ hPa et $\theta=25\,^{\circ}$ C. Le volume total de gaz dégagé par la réaction est 0,89 mL.

- 2.1. Calculer la quantité de matière de gaz produit.
- 2.2. Établir le tableau d'avancement de la réaction. En déduire l'avancement final et le réactif limitant.
- **2.3.** Calculer le volume de solution d'acide chlorhy-drique utilisé.

Adapté du sujet de Bac Pondichéry, 2006.

DES CLÉS POUR RÉUSSIR

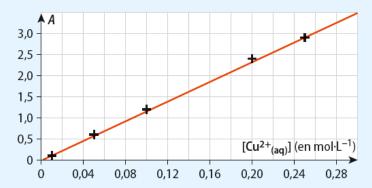
- 1. Utiliser la définition du pH et la loi de Kohlrausch.
- 2.1. Utiliser l'équation d'état du gaz parfait.
- **2.2.** Utiliser la valeur de la concentration en ions oxonium calculée à la question 1.

25 Dosages d'une solution de sulfate de cuivre

On cherche à doser une solution utilisée en hydrométallurgie pour réaliser des dépôts de cuivre. Elle contient des ions cuivre (II) ${\rm Cu}^{2+}_{\rm (aq)}$ et des ions sulfate ${\rm SO_4}^{2-}_{\rm (aq)}$.

On dispose d'une solution S₁ obtenue par dissolution dont l'équation est :

$$CuSO_{4(s)} \rightarrow Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$


Données Conductivités molaires ioniques () Rabat IV

🕧 Dosage par étalonnage utilisant l'absorbance

On réalise le dosage spectrophotométrique de la solution S₁.

Pour cela, on prépare un ensemble de solutions étalons, puis on mesure l'absorbance A de chacune des solutions avec un spectrophotomètre.

Les points expérimentaux et la droite-modèle sont présentés sur le graphique ci-dessous.

a. On prélève 10,0 mL de la solution S_1 . On l'introduit dans une fiole jaugée de 50 mL que l'on complète avec de l'eau distillée. Après homogénéisation l'absorbance de cette solution S_2 vaut A=1,7.

Déterminer la concentration en ions $Cu^{2+}_{(aq)}$ de la solution S_2 .

b. En déduire celle de la solution S₁.

2 Dosage par étalonnage utilisant la conductivité

On prépare de nouvelles solutions étalons plus diluées de sulfate de cuivre $(Cu^{2+}_{(aq)}, SO_4^{2-}_{(aq)})$ dont on mesure la conductivité σ .

[Cu ²⁺] (en mmol·L ⁻¹)	5,00	2,50	2,00	1,00	0,50
Conductivité (en mS·m ⁻¹)	134	66,5	53,5	27,2	13,0

- a. Pourquoi n'utilise-t-on pas les solutions étalons de la question 1?
- **b.** Placer sur un graphique les points représentant la conductivité en fonction de la concentration en ions cuivre (II). Tracer la courbe-modèle.
- c. Donner l'expression littérale de la conductivité de la solution.

En déduire que l'on peut écrire $\sigma = (\lambda_{Cu^{2+}} + \lambda_{SO,^{2-}})[Cu^{2+}].$

Justifier l'allure de la courbe obtenue à la question b.

d. On mesure la conductivité d'une solution diluée 500 fois à partir de la solution $S_1 : \sigma = 43 \text{ mS} \cdot \text{m}^{-1}$.

Déterminer la concentration en ions $Cu^{2+}_{(aq)}$ de cette solution.

En déduire celle de la solution S₁.

🔇 Validité des dosages

La solution S_1 est préparée par dissolution d'une masse m=96.5 g sulfate de cuivre, de masse molaire M=249.6 g·mol⁻¹, dans l'eau distillée pour obtenir V=500 mL de solution.

- a. Déterminer la concentration en ions cuivre (II) de la solution S₁.
- b. Les dosages effectués vous paraissent-ils donner des résultats conformes à cette valeur ? Que faudrait-il savoir pour conclure ?