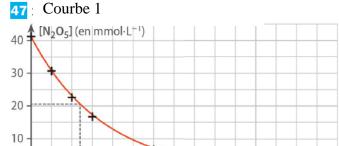
47 Décomposition du pentaoxyde d'azote

Tracer et exploiter un graphique


Le pentaoxyde de diazote N_2O_5 est un des oxydes d'azote présents dans les gaz d'échappement des voitures. Il subit une réaction de décomposition en phase gazeuse :

$$N_2O_{5(g)} \rightarrow 2 NO_{2(g)} + \frac{1}{2} O_{2(g)}$$

Cette réaction est suivie en déterminant la concentration de $\rm N_2O_5$ en fonction du temps t.

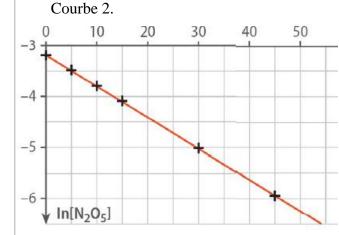
t (en min)	0	5	10	15	30	45
[N ₂ O ₅] (en mmol·L ⁻¹)	41,2	30,7	22,6	16,7	6,65	2,64

- 1. Observer la courbe 1 ci-contre. En déduire la valeur du temps de demi-réaction $t_{1/2}$.
- 2. Cette réaction suit une loi de vitesse d'ordre 1 par rapport au réactif N_2O_5 , c'est-à-dire que la vitesse volumique de disparition du réactif peut s'écrire $v_{D(N_2O_6)}(t) = k[N_2O_5](t)$.
- a. Établir l'équation différentielle du premier ordre vérifiée par $[N_2O_5](t)$.
- **b.** La solution de l'équation différentielle est de la forme $[N_2O_5](t) = Ae^{-kt}$. Déterminer A à partir des conditions initiales.
- c. Observer la courbe 2 ci-contre. En déduire que la réaction est du premier ordre par rapport à N_2O_5 et déterminer la valeur de la constante de vitesse k en s⁻¹.
- d. En utilisant la définition du temps de demi-réaction, montrer que $t_{1/2} = \frac{\ln(2)}{k}$. Calculer la valeur de $t_{1/2}$ et la comparer au résultat obtenu à la question 1.

30

40

50


60

10

20

t (en min)

70

