Signaux Electriques SE6 Filtrage linéaire d'un signal sinusoïdal

I Etude d'un filtre	1
1.) Grandeurs caractéristiques d'un signal sinusoïdal	
2.) Diagramme de Bode du quadripôle	
II Etude détaillée de filtres du premier ordre	
1) Circuit RC série sortie sur C.	
2) Circuit RC série sortie sur R.	
III Etude détaillée de filtres du second ordre	
Circuit RLC série sortie sur C	
2) Circuit RLC série sortie sur R	

Filtre : opérateur qui permet de sélectionner des signaux utiles, selon leurs fréquences.

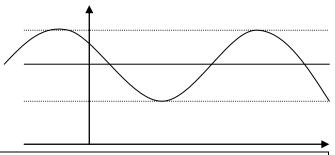
<u>Linéaire</u> : ne contient que des dipôles linéaires. La grandeur de sortie a alors la même fréquence que la grandeur d'entrée.

I Etude d'un filtre

1.) Grandeurs caractéristiques d'un signal sinusoïdal

<u>Grandeur sinusoïdale</u>: $g(t) = Gm \cos(\omega t + \varphi) + \langle g \rangle$

où la <u>valeur moyenne de g</u> est $\left| \left\langle g \right\rangle = \frac{1}{T} \int_{0}^{T} g(t) dt \right|$



Pour toute la suite du cours, on prendra $\leq g \geq 0$ d'où $g(t) = Gm \cos(\omega t + \varphi)$

Valeur efficace (ou valeur RMS): valeur du signal continu qui, traversant le même conducteur ohmique, provoque les mêmes pertes Joule moyennes.

$$I_{eff} = \sqrt{\langle i^2(t) \rangle} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$

$$\left|I_{eff} = \sqrt{\left\langle i^{2}(t)\right\rangle} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt}\right| \qquad \qquad U_{eff} = \sqrt{\left\langle u^{2}(t)\right\rangle} = \sqrt{\frac{1}{T} \int_{0}^{T} u^{2}(t) dt}$$

<u>Démo</u>: Conducteur ohmique, en régime continu

Loi d'ohm : U = R.I Puissance reçue : $P = U.I = \frac{U^2}{R} = R.I^2$

Conducteur ohmique, en régime périodique : Loi d'Ohm

Puissance instantanée reçue :

Puissance moyenne:

Signal sinusoïdal:
$$i(t) = Im \cos(\omega t + \varphi_i)$$

Signal sinusoïdal:
$$i(t) = \text{Im cos } (\omega t + \varphi_i)$$
 $u(t) = \text{Um cos } (\omega t + \varphi_u)$ $T = \frac{2\Pi}{\omega} = \frac{1}{f}$ $I_{eff} = \frac{\text{Im}}{\sqrt{2}}$

$$\frac{\text{Im}}{\sqrt{2}} \qquad U_{eff} = \frac{Um}{\sqrt{2}}$$

2.) Diagramme de Bode du quadripôle

Quadripôle : relié à l'extérieur par 4 bornes. Linéaire : ne contient que des dipôles linéaires. Passif : ne contient pas de sources indépendantes de tension ou de courant.

Amplification en tension (à vide) ou fonction de transfert du quadripôle : $\underline{\underline{H}(j\omega)} = \frac{\underline{\underline{u}_s}}{\underline{\underline{u}_e}} =$

$$\underline{H}(j\omega) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{\underline{U}_{sm}}{\underline{U}_{em}}$$

Gain en tension du quadripôle :

$$G(\omega) = +20\log|\underline{H}|$$

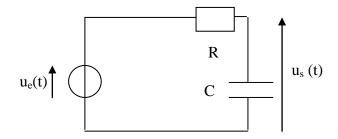
Diagramme de Bode des amplitudes (ou du gain): on trace G en fonction de logω.

Phase du quadripôle : $\varphi = \arg(\underline{H}(j\omega))$

<u>Diagramme de Bode des phases</u>: on trace φ en fonction de logω.

Une décade est l'ensemble des pulsations comprises entre ω et 10ω .

II Etude détaillée de filtres du premier ordre 1) Circuit RC série sortie sur C.



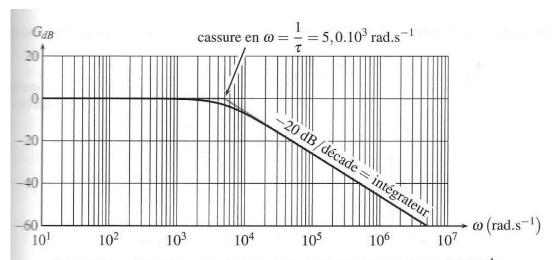


Figure 11.4 – Gain d'un passe-bas du premier ordre dans le cas où, $\tau=2,0.10^{-4}$ s (les asymptotes sont en gris).

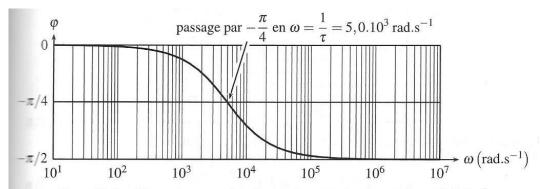
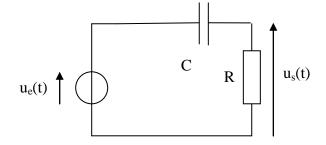


Figure 11.5 – Phase d'un passe-bas du premier ordre dans le cas où $au=2,0.10^{-4}~{\rm s}.$

2) Circuit RC série sortie sur R.



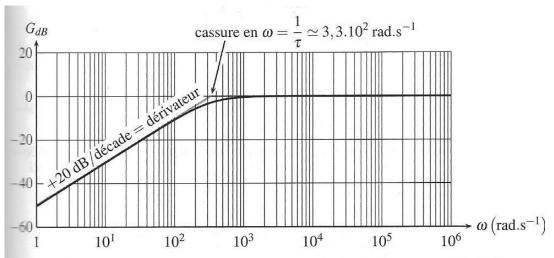


Figure 11.7 – Gain d'un passe-haut du premier ordre dans le cas où $\tau=3,0.10^{-3}$ s (les asymptotes sont en gris).

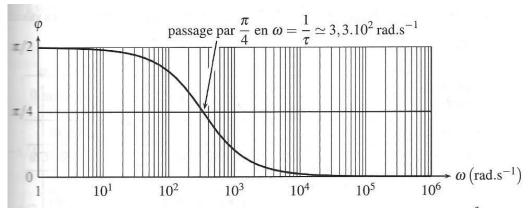
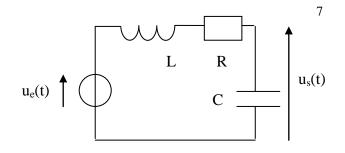


Figure 11.8 – Phase d'un passe-haut du premier ordre dans le cas où $\tau=3,0.10^{-3}~{\rm s}.$

III Etude détaillée de filtres du second ordre 1) Circuit RLC série sortie sur C.



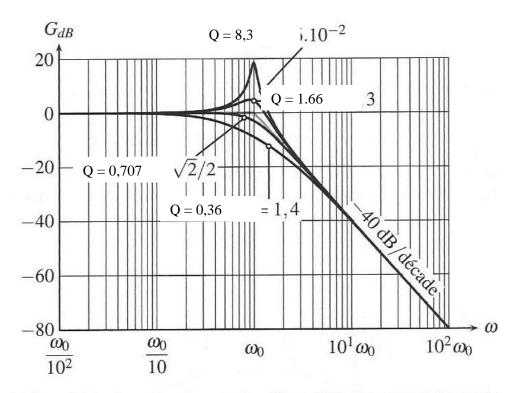


Figure 11.16 — Gain d'un passe-bas du deuxième ordre (les asymptotes sont φ

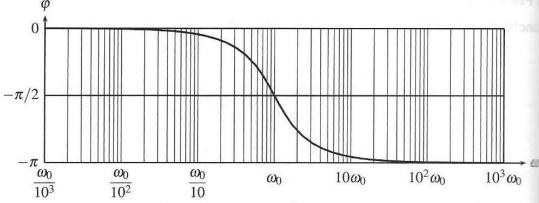
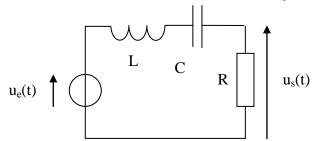


Figure 11.15 — Phase d'un passe-bas du deuxième ordre $\ Q=0.707$

2) Circuit RLC série sortie sur R.



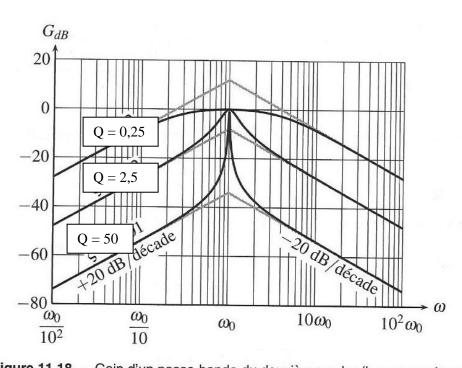


Figure 11.18 – Gain d'un passe-bande du deuxième ordre (les expressions aymptotiques sont en gris).

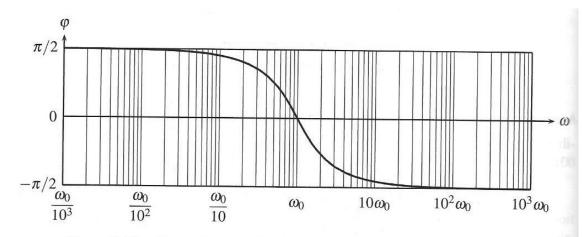


Figure 11.19 – Phase d'un passe-bande du deuxième ordre $\ Q=0{,}707$