correction TD R4. Chimie2. Méthodes physiques d'analyse.

$$6 \text{ pH} = -\frac{\log([\text{H}_3\text{O}^+])}{c^0} = -\log(1.6 \times 10^{-3}) = 2.80$$

$$[H_3O^+] = c^0 \times 10^{-pH} = 10^{-1,2} = 6,3 \times 10^{-2} \text{ mol} \cdot L^{-1}$$

8 a.
$$\sigma = \lambda_{Cl} \times [Cl^-] + \lambda_{Na} \times [Na^+]$$

b. [Na⁺]=[Cl⁻] donc [Cl⁻]=
$$\frac{\sigma}{\lambda_{Cl} + \lambda_{Na}}$$

$$[Cl^{-}] = \frac{5.6}{5.01 \times 10^{-3} + 7.63 \times 10^{-3}} = 443 \text{ mol·m}^{-3} = 0.443 \text{ mol·L}^{-1}$$

a.
$$HCO_2H_{(aq)} + H_2O_{(a)} \rightleftharpoons HCO_2^-_{(aq)} + H_3O^+_{(aq)}$$
b. $HCO_2H_{(aq)} + H_2O_{(aq)} \rightleftharpoons HCO_2^-_{(aq)} + H_3O^+_{(aq)}$

Av. Quantité de matière... HCO_2H H_2O $HCO_2^ H_3O^+_{(aq)}$

0 ...apportée à l'état initial $n = cV$ excès $n = cV$ $n = cV$ $n = cV$ excès $n = cV$ $n = cV$

c. À l'équilibre,
$$n_{\text{H}_3\text{O}^+} = n_{\text{HCO}_2} - = x_{\text{\'eq}}$$
.

On déduit que
$$[H_3O^+]_{\text{éq}} = [HCO_2^-]_{\text{éq}} = \frac{x_{\text{éq}}}{V}$$
.

À l'équilibre,
$$n_{HCO_2H} = cV - x_{éq}$$
.

On déduit que
$$[HCO_2H]_{\text{éq}} = \frac{cV - x_{\text{éq}}}{V} = c - \frac{x_{\text{éq}}}{V}$$
.

d. À l'équilibre,
$$\sigma = \lambda_{\text{H}_3\text{O}^+}[\text{H}_3\text{O}^+]_{\text{\'eq}} + \lambda_{\text{HCO}_2^-}[\text{HCO}_2^-]_{\text{\'eq}}$$
.

$$\sigma = \lambda_{H_3O^+} \frac{x_{\text{\'eq}}}{V} + \lambda_{HCO_2^-} \frac{x_{\text{\'eq}}}{V} = (\lambda_{H_3O^+} + \lambda_{HCO_2^-}) \frac{x_{\text{\'eq}}}{V}$$

$$x_{\text{\'eq}} = \frac{\sigma V}{\lambda_{\text{H}_3\text{O}^+} + \lambda_{\text{HCO}_2}^-}$$

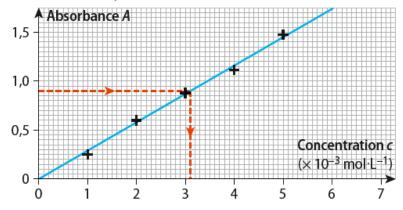
$$x_{\text{éq}} = \frac{2,75 \times 10^{-2} \text{ S} \cdot \text{m}^{-1} \times 100,0 \times 10^{-6} \text{ m}^{3}}{349,8 \times 10^{-4} \text{ S} \cdot \text{m}^{2} \cdot \text{mol}^{-1} + 54,6 \times 10^{-4} \text{ S} \cdot \text{m}^{2} \cdot \text{mol}^{-1}}$$

$$x_{\rm eq} = 6.81 \times 10^{-5} \text{ mol}$$

e.
$$K = Q_{r,éq} = \frac{\left[HCO_2^{-}\right]_{\acute{e}q} \times \left[H_3O^{+}\right]_{\acute{e}q}}{\left[HCO_2H\right]_{\acute{e}q}c^{0}} = \frac{\frac{x_{\acute{e}q}}{V} \times \frac{x_{\acute{e}q}}{V}}{c - \frac{x_{\acute{e}q}}{V}}$$

$$K = \frac{\frac{6,81 \times 10^{-5}}{0,100} \times \frac{6,81 \times 10^{-5}}{0,100}}{2,5 \times 10^{-3} - \frac{6,81 \times 10^{-5}}{0,100}} = 2,6 \times 10^{-4}$$

4 a. Par lecture graphique, une absorbance de 0,9 correspond à une concentration de 3.1×10^{-3} mol·L⁻¹.



- b. Pour calculer le coefficient directeur de la droite, on utilise deux points de la droite-modèle : $(0 \text{ mol} \cdot \text{L}^{-1}; 0)$ et $(5,0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}; 1,45)$ Le coefficient directeur vaut : $k = \frac{1,45-0}{5.0 \times 10^{-3}-0} = 2,9 \times 10^2 \text{ L} \cdot \text{mol}^{-1}$
- c. L'équation de la droite est A = kc

donc:
$$c = \frac{A}{k} = \frac{0.9}{2.9 \times 10^2} = 3 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

exo 22

- 2 D'après la définition du pH, la concentration en ions oxonium est $[H_30^+]=c^010^{-pH}=5,2\times10^{-3}$ mol·L⁻¹.
- **1** La concentration de la solution est égale à la concentration des ions oxonium, donc $c = [H_3O^+] = 5.2 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$.
- © D'après la loi de Kohlrausch, la conductivité de la solution s'écrit $\sigma = \lambda_{\text{H}_3\text{O}^+} [\text{H}_3\text{O}^+] + \lambda_{\text{NO}_3^-} [\text{NO}_3^-].$

Les concentrations des deux ions sont égales et liées à la concentration c par la relation $c=[\mathrm{H_3O^+}]=[\mathrm{NO_3^-}]$. La conductivité est donc $\sigma=(\lambda_{\mathrm{H_3O^+}}+\lambda_{\mathrm{NO_3^-}})c$. D'où

$$c = \frac{\sigma}{\lambda_{\rm H_30^+} + \lambda_{\rm NO_3^-}} = \frac{220 \times 10^{-3}}{35,0 \times 10^{-3} + 7,1 \times 10^{-3}} = 5,23 \text{ mol·m}^{-3}$$
 soit $c = 5.23 \times 10^{-3}$ mol·L⁻¹.

d La concentration est divisée par deux. Comme la conductivité de la solution est proportionnelle à sa concentration, la conductivité est aussi divisée par deux et vaut 110 mS·m⁻¹. La concentration en ions oxonium est donc égale à

$$[H_30^+] = \frac{c}{2} = 2,6 \times 10^{-3} \text{ mol} \cdot L^{-1}.$$

On en déduit : pH =
$$-\log\left(\frac{[H_3O^+]}{c^0}\right)$$
 = 2,58

a D'après la loi de Kohlrausch, la conductivité de la solution s'écrit :

$$\sigma = \lambda_{\text{H.O}^+} [\text{H}_3\text{O}^+] + \ \lambda_{\text{Cl}^-} [\text{Cl}^-]$$

Les deux concentrations [H₃0+] et [Cl-] sont égales, donc :

$$\sigma = (\lambda_{\text{H}_2\text{O}^+} + \lambda_{\text{Cl}^-}) \, [\text{H}_3\text{O}^+]$$

$$[\text{H}_3\text{O}^+] = \frac{\sigma}{\lambda_{\text{H}_2\text{O}^+} + \lambda_{\text{C}\vdash}} = \frac{55,4\times 10^{-3}}{35,0\times 10^{-3} + 7,6\times 10^{-3}} = 1,30 \text{ mol·m}^{-3}$$

soit $[H_20^+] = 1,30 \times 10^{-3} \text{ mol} \cdot L^{-1}$.

Le pH de la solution d'acide chlorhydrique est donc :

pH =
$$-\log\left(\frac{[H_30^+]}{c^0}\right) = -\log\left(\frac{1,30\times10^{-3}}{1}\right) = 2,89$$

b Le volume de gaz formé est V = 10,0 mL soit $V = 10,0 \times 10^{-6}$ m³. La température absolue du gaz est T = 25,0 + 273,1 = 298,1 K. D'après l'équation d'état du gaz parfait, la quantité de matière de gaz

formé est
$$n = \frac{PV}{RT} = \frac{1,01 \times 10^5 \times 10,0 \times 10^{-6}}{8,31 \times 298,1} = 4,08 \times 10^{-4} \text{ mol}.$$

© D'après l'équation de la réaction, la quantité de matière d'ions oxonium consommée est le double de la quantité de matière de dihydrogène formée. Elle vaut donc : $n' = 2n = 8,15 \times 10^{-4}$ mol.

La concentration des ions oxonium en solution étant c= 1,30 imes 10 $^{-3}$ mol·L $^{-1}$,

le volume de solution utilisée est donc $V_0 = \frac{n'}{c} = \frac{8,15 \times 10^{-4}}{1,30 \times 10^{-3}} = 6,27 \times 10^{-1} \text{ L}.$

73 1. $[H_3O^+] = c^010^{-pH} = 4.0 \times 10^{-4} \text{ mol} \cdot L^{-1}$

La conductivité s'écrit $\sigma = (\lambda_{NO_3} - [NO_3] + \lambda_{H_3O} + [H_3O^+]).$

Comme les concentrations en ions sont égales, on peut écrire :

$$\sigma = \lambda_{\text{NO}_3}^{} - [\text{H}_3\text{O}^+] \, + \, \lambda_{\text{H}_3\text{O}^+}^{} [\text{H}_3\text{O}^+] \, = (\lambda_{\text{NO}_3}^{} - \, + \, \lambda_{\text{H}_3\text{O}^+}^{}) [\text{H}_3\text{O}^+]$$

La concentration en ions oxonium est donc :

$$[H_3O^+] = \frac{\sigma}{\lambda_{NO_3}^{-} + \lambda_{H_3O^+}} = 4,03 \times 10^{-1} \text{ mol·m}^{-3} = 4,03 \times 10^{-4} \text{ mol·L}^{-1}$$

2.1. La quantité de matière de dioxyde de carbone est :

$$n = \frac{PV}{RT} = \frac{1,02 \times 10^5 \times 0,89 \times 10^{-6}}{8.31 \times (25.0 + 273.15)} = 3,7 \times 10^{-5} \text{ mol.}$$

2.2.		HCO ₃ -(aq)	+ H₃O+ –	→ CO _{2 (g)} +	+ 2 H₂O (⁄)
Av.	Quantité de matière	de HCO _{3⁻(aq)}	de H ₃ O ⁺ (aq)	de CO _{2 (aq)}	de H₂O (ദ)
0	apportée à l'état initial	excès	n	0	solvant
x	en cours de réaction	excès	n - x	x	solvant
Χř	présente à l'état final	excès	$n - x_f = 0$	$x_f = n$	solvant

L'avancement maximal vaut $x_f = n$.

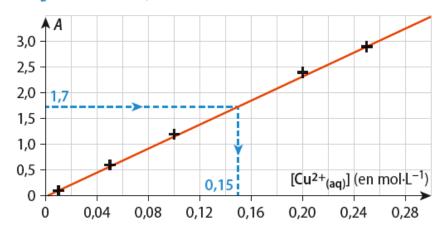
2.3. Le volume d'acide chlorhydrique apporté est :

$$V = \frac{n}{c} = \frac{3.7 \times 10^{-5}}{4.0 \times 10^{-4}} = 9.3 \times 10^{-2} \text{ L} = 930 \text{ mL}$$

exo 25

Dosage par étalonnage utilisant l'absorbance

a. On détermine graphiquement que la concentration en ions cuivre de la solution S_2 est $[Cu^{2+}] = 1.5 \times 10^{-1} \text{ mol} \cdot L^{-1}$.

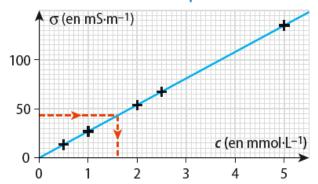


b. La solution a été diluée cinq fois donc la concentration des ions cuivre (II) dans la solution S_1 est $[Cu^{2+}] = 7.5 \times 10^{-1}$ mol·L⁻¹.

Dosage par étalonnage utilisant la conductivité

a. La loi de Kohlrausch est vérifiée pour des concentrations inférieures à $10^{-2}\ \text{mol}\cdot L^{-1}$, donc on utilise des solutions plus diluées.

b.



c. D'après la loi de Kohlrausch, la conductivité de la solution s'écrit :

$$\sigma = \lambda_{\text{Cu}^{2+}} \left[\text{Cu}^{2+} \right] + \lambda_{\text{SO},^{2-}} \left[\text{SO}_4^{\ 2-} \right]$$

Comme [Cv²⁺] = [S0₄²⁻], on a σ = ($\lambda_{cv^{2+}} + \lambda_{S0,2^{-}}$)[Cv²⁺].

La courbe est donc une droite qui passe par l'origine.

d. Graphiquement, on obtient $[Cu^{2+}] = 1.6 \times 10^{-3} \text{ mol} \cdot L^{-1}$ pour la solution diluée. Comme la solution a été diluée 500 fois, la concentration d'ions cuivre (II) dans la solution S₁ est donc 500 fois supérieure, soit $[Cv^{2+}] = 8.0 \times 10^{-1} \text{ mol} \cdot L^{-1}.$

(3) Validité des dosages

Validité des dosages a. La concentration est $c = \frac{m}{MV} = \frac{96,5}{249,6 \times 500 \times 10^{-3}} = 7,73 \times 10^{-1} \text{ mol·L}^{-1}.$

b. Les deux méthodes donnent des valeurs proches du résultat attendu. Mais pour pouvoir juger de la validité des deux techniques employées, il faudrait avoir les incertitudes-types associées aux mesures.