exo 23

- a On calcule les quantités de matière initiales :
 - $n_{\mathbb{S},0_0^{2-},0}=c_1 \times V_1=1,0 \times 10^{-1} \times 60 \times 10^{-3}=6,0 \times 10^{-3}$ mol;
 - $n_{\text{I}^-,0} = c_2 \times V_2 = 1.0 \times 10^{-1} \times 40 \times 10^{-3} = 4.0 \times 10^{-3} \text{ mol.}$
- **b** On construit le tableau d'avancement.

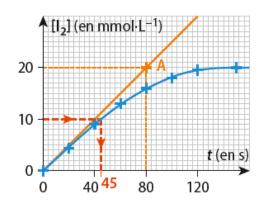
*Av : avancement		S ₂ O ₈ ²⁻ (aq) -	$\rightarrow 2 \text{ SO}_4^{2-}_{(aq)} + \text{ I}_{2(aq)}$		
Av.*	Quantité de matière	de S ₂ O ₈ ²	de I [_]	de \$0 ₄ ²⁻	de I ₂
0	apportée	6,0×10 ⁻³	4,0×10 ⁻³	0	0
x	en cours	$6,0 \times 10^{-3} - x$	$4,0\times10^{-3}-2x$	2 x	x
x_{f}	finale	$6.0 \times 10^{-3} - x_{\rm f}$	$4,0 \times 10^{-3} - 2x_{\rm f}$	$2x_{\rm f}$	x_{f}

Si $S_2O_8^{2-}$ est le réactif limitant, $6.0 \times 10^{-3} - x_{\rm f} = 0$ donc $x_{\rm f} = 6.0 \times 10^{-3}$ mol. Si c'est I $^-$ alors $4.0 \times 10^{-3} - 2x_{\rm f} = 0$ donc $x_{\rm f} = 2.0 \times 10^{-3}$ mol. On en déduit que $x_{\rm f} = 2.0 \times 10^{-3}$ mol. La concentration finale en diiode vaut donc $[I_2]_{\rm f} = \frac{x_{\rm f}}{V_1 + V_2} = 20 \times 10^{-3}$ mol·L $^{-1}$.

- C La courbe d'évolution $[I_2] = f(t)$ est tracée ci-contre.
- d La vitesse volumique d'apparition de I_2 est égale au coefficient directeur de la tangente à la courbe en t=0:

$$v_{A(I_2)(0)} = \frac{20 \times 10^{-3} - 0}{80 - 0}$$

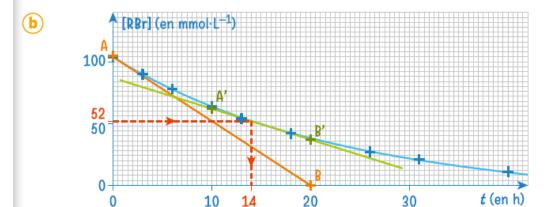
donc $v_{A(I_a)(0)} = 2.5 \times 10^{-4} \text{ mol·L}^{-1} \cdot \text{s}^{-1}$.



e Le temps de demi-réaction est la date à laquelle $[I_2] = \frac{[I_2]_f}{2} = 10 \times 10^{-3} \text{ mol·L}^{-1}, \text{ on lit sur le graphique } t_{1/2} = 45 \text{ s.}$

exo24

La mesure de la conductivité σ permet de déterminer [H+] et [Br-], on en déduit [RBr] grâce à un tableau d'avancement.



- © On trace les tangentes à la courbe aux deux dates données. On calcule leurs coefficients directeurs en identifiant deux points sur chaque droite.
 - À t = 0, on repère les points A (0 h, 105 mmol·L⁻¹) et B (20 h, 0 mmol·L⁻¹). On calcule le coefficient directeur 0 105

$$\frac{0-105}{20-0} = -5.3 \text{ mmol·L}^{-1} \cdot \text{h}^{-1} \text{ donc } \nu_{\text{D(RBr)}}(0) = 5.3 \text{ mmol·L}^{-1} \cdot \text{h}^{-1}.$$

• À t = 15 h, on repère les points A' (10 h, 62 mmol·L⁻¹) et B' (20 h, 37 mmol·L⁻¹). On calcule le coefficient directeur

$$\frac{37-62}{20-10} = -2.5 \text{ mmol} \cdot \text{L}^{-1} \cdot \text{h}^{-1} \text{ donc } v_{\text{D(RBr)}}(15 \text{ h}) = 2.5 \text{ mmol} \cdot \text{L}^{-1} \cdot \text{h}^{-1}.$$

On remarque que $v_{D(RBr)}(15 \text{ h}) < v_{D(RBr)}(0)$. On met ainsi en évidence le facteur cinétique « concentration des réactifs » : la vitesse volumique de disparition de RBr diminue au cours du temps car la concentration en RBr diminue au cours de la transformation.

d RBr étant le réactif limitant, le temps de demi-réaction est la date à laquelle $[RBr] = \frac{[RBr](0)}{2} = 52 \text{ mmol} \cdot \text{L}^{-1}$. On lit sur le graphique $t_{1/2} = 14 \text{ h}$.

(a) Par définition, la vitesse volumique d'apparition est égale à :

$$v_{A(RBr)} = -\frac{d[RBr]}{dt}$$
 On en déduit que
$$-\frac{d[RBr]}{dt} = k[RBr]$$
 donc
$$\frac{d[RBr]}{dt} + k[RBr] = 0$$

C'est une équation différentielle du premier ordre à coefficients constants,

dont la solution s'écrit :

$$[RBr](t) = Ae^{-kt}$$

En utilisant la condition initiale à t=0:

$$[RBr]_0 = Ae^0 = A$$

donc

$$[RBr](t) = [RBr]_0 e^{-kt}$$

b Les points sont alignés, ce qui confirme que la réaction est d'ordre 1 par rapport à RBr.

La droite passe par A (13 h; -3,0) et B (29 h; -4,0) donc son coefficient directeur vaut :

$$\frac{-4,0-(-3,0)}{29-13}$$
 = -0,062 h⁻¹

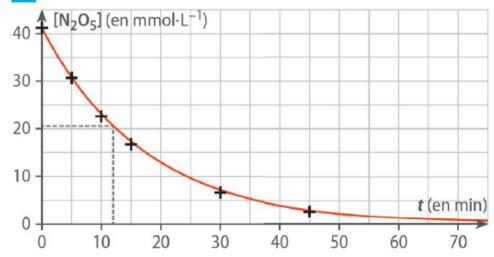
En prenant le logarithme de la relation de la question b, on a :

$$ln([RBr](t)) = ln([RBr]_0) - kt$$

Le coefficient directeur de la droite vaut donc -k soit $k = 0.062 \text{ h}^{-1} = 1.7 \times 10^{-5} \text{ s}^{-1}$.

Il suffit de tracer $\frac{1}{c}$ en fonction de t et de vérifier que c'est une droite.

47 1.



La date à laquelle $[N_2O_5] = \frac{[N_2O_5]_0}{2}$ est $t_{1/2} = 12$ min.

2. a. Par définition de la vitesse de disparition :

$$-\frac{d[N_2O_5]}{dt}(t) = k[N_2O_5](t)$$

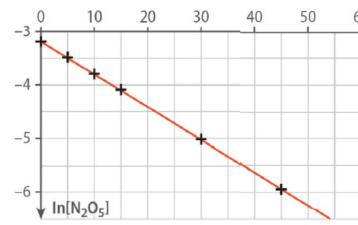
d'où l'équation différentielle $\frac{d[N_2O_5]}{dt} + k[N_2O_5] = 0$.

b. À t = 0, $Ae^0 = [N_2O_5](0)$ soit A = 41,2 mmol·L⁻¹.

c. On dresse le tableau de valeurs :

t (en min)	0	5	10	15	30	45
In([N ₂ O ₅])	-3,19	-3,48	-3,79	-4,09	-5,01	-5,94

On trace le graphique :



d. Par définition, $[N_2O_5](t_{1/2}) = \frac{[N_2O_5]_0}{2}$ donc $[N_2O_5]_0$ $e^{-kt_{1/2}} = \frac{[N_2O_5]_0}{2}$ donc $e^{-kt_{1/2}} = \frac{1}{2}$ donc $-kt_{1/2} = \ln(\frac{1}{2}) = -\ln(2)$

donc $t_{1/2} = \frac{\ln(2)}{k} = \frac{\ln(2)}{0,061} = 11,4 \text{ h}$ qui est bien cohérent avec la valeur trouvée à la question 1.

L'alignement des points permet de valider l'hypothèse d'ordre 1 car $\ln([N_2O_5]) = \ln(A) - kt$ qui est l'équation d'une droite affine de coefficient directeur -k.

On calcule ce coefficient à partir du graphique :

$$-k = \frac{-5,94+3,19}{45-0} = -0,061 \text{ h}^{-1} \text{ donc } k = 0,061 \text{ h}^{-1}.$$