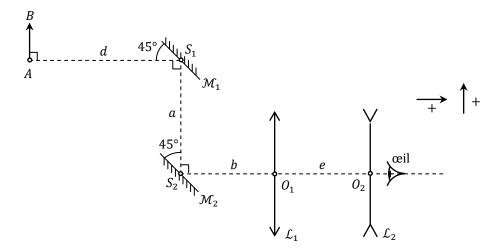
Devoir maison n°1. A rendre le 30/09/25. Facultatif. PTSI1

L'entrée d'un périscope est constituée de deux miroirs plans \mathcal{M}_1 et \mathcal{M}_2 , circulaires et de centres respectifs S_1 et S_2 (Fig. ci-après). Après réflexions sur \mathcal{M}_1 et \mathcal{M}_2 , la lumière entre dans un système de deux lentilles \mathcal{L}_1 et \mathcal{L}_2 , assimilées à des lentilles minces de centres respectifs O_1 et O_2 . Les miroirs sont inclinés d'un angle de O_2 0 par rapport à l'axe optique du système représenté en pointillés. L'orientation algébrique de l'axe optique ainsi que celle de l'axe transversal sont indiquées sur la figure (signes +).

Les distances focales images algébrisées de \mathcal{L}_1 et \mathcal{L}_2 sont respectivement $f_1' = 1$ m et $f_2' = -0.125$ m. Un œil emmétrope (c'est-à-dire sans défaut) est placé juste derrière \mathcal{L}_2 . Le périscope \mathcal{S}_p est donc l'ensemble $\{\mathcal{M}_1, \mathcal{M}_2, \mathcal{L}_1, \mathcal{L}_2\}$. On observe un objet placé dans un plan transversal, en avant de \mathcal{S}_p .

On introduit les distances $a = S_2S_1 > 0$, $b = S_2O_1 > 0$, $e = O_1O_2 > 0$ et $d = AS_1 > 0$. Dans tout l'exercice, on admet que les lentilles fonctionnent dans les conditions de Gauss.



- 1. L'objet AB est placé à grande distance du périscope (suffisamment loin pour que d puisse être considéré comme infini). On note e_0 la valeur de e permettant à l'œil d'observer AB à travers \mathcal{S}_p sans accommoder. Exprimer e_0 en fonction des distances focales.
- 2. L'objet étant encore à l'infini, on règle S_p de telle sorte que $e = e_0 \epsilon$ où $\epsilon > 0$ et $\epsilon \ll e_0$. Déterminer la nouvelle position de l'image à travers S_p en fonction des distances indiquées dans l'énoncé (dont éventuellement les distances focales) et de ϵ . Donner la nature de l'image, réelle ou virtuelle.
- 3. L'objet est maintenant placé à distance finie. On note A_1B_1 l'image de AB par le système $\{\mathcal{M}_1, \mathcal{M}_2, \mathcal{L}_1\}$ et $p_1' = \overline{O_1A_1}$. Exprimer p_1' en fonction des distances indiquées dans l'énoncé.
- 4. Déterminer alors la taille (grandeur algébrique) $\overline{A_1B_1}$ de cette image intermédiaire en fonction de ces même données et de \overline{AB} .
- 5. L'image A_2B_2 de AB par S_p se forme en avant de \mathcal{L}_2 , à une distance $\overline{A_2O_2} = d_m$ où $d_m = 25$ cm. De plus, $\overline{A_2B_2} = 1$ mm. On note $\theta > 0$ l'angle sous lequel l'image de AB par S_p est vue par l'observateur (on rappelle que l'œil est derrière et à proximité immédiate de \mathcal{L}_2). Déterminer un ordre de grandeur de θ . L'image obtenue est-elle ponctuelle ou étendue pour l'oeil ?
- 6. On vise à nouveau un objet AB situé à l'infini. Déterminer l'expression de $\Delta e > 0$ dont il faut déplacer \mathcal{L}_2 depuis la position précédente pour retrouver le réglage initial $e = e_0$. On cherchera une expression faisant intervenir les distances indiquées dans l'énoncé, ainsi que d_m .