PTSI 1. Interrogation orale de Sciences Physiques n°8. Semaine du 24 /11 au 28/11.

<u>Remarques pour les étudiants</u>: Apporter sa calculatrice (utilisation uniquement après l'accord du colleur) et un <u>classeur de cours par trinôme</u> (à présenter au colleur). Si la note est inférieure à 10/20, rédiger le compterendu de la colle (cours uniquement), et me le remettre dans les deux jours.

Signaux électriques

"SE3. L'oscillateur harmonique" Exercices.

"SE4 Oscillateurs électriques en régime transitoire." Cours et exercices

- Circuit R, L, C série en régime transitoire

Réponse à un échelon de tension. Mise sous forme canonique pour la solution libre et résolution. Aspect énergétique.

$$\frac{d^2 u_C}{dt^2} + 2\lambda \frac{du_C}{dt} + \omega_0^2 u_C(t) = 0 \text{ (ou } \frac{d^2 u_C}{dt^2} + \frac{\omega_0}{Q} \frac{du_C}{dt} + \omega_0^2 u_C(t) = 0 \text{)}.$$

<u>- Oscillateur mécanique amorti</u> : le ressort horizontal avec force de frottement fluide. Analogie électro-mécanique. Aspect énergétique.

Attention, les portraits de phase ne sont plus au programme.

"SE5 Oscillateurs soumis à une excitation sinusoïdale" Cours et exercices

- Les signaux sinusoïdaux : représentation temporelle, représentation complexe. Dérivation et intégration en complexe.
- Lois des réseaux linéaires en complexe : lois de Kirchhoff, impédance, admittance, impédances des dipôles R, L et C.
- Exemple du courant dans un circuit RLC série : On ne fait pas la résolution sous forme canonique. Résolution en complexe, courbes d'amplitude et de phase en fonction de ω , définition de la bande passante, facteur de qualité (introduit avec la largeur de la bande passante).
- Exemple de la tension aux bornes du condensateur dans un circuit RLC série : on introduit la forme canonique $(Q,\,\omega_0)$ et la pulsation réduite x Résolution en complexe, courbes d'amplitude (étude du maximum) et de phase en fonction de ω .
- Exemple du ressort horizontal dont une extrémité est soumise à une excitation sinusoïdale par déplacement de l'extrémité: étude de l'élongation et de la vitesse (sous forme canonique Q, ω_0 en introduisant la pulsation réduite).

"SE6 Filtrage linéaire de signaux sinusoïdaux" COURS UNIQUEMENT (début)

- Définition d'un diagramme de Bode. Valeur efficace.
- <u>Filtres du premier ordre : le circuit RC série sortie sur C</u>: circuits équivalents à basse et haute fréquence, obtention de l'équation différentielle à partir de la fonction de transfert, fonction de transfert, recherche des asymptotes ; caractère intégrateur ou dérivateur, tracé des diagrammes de Bode en gain et en phase.